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Abstract— 2-D phase unwrapping (PU) is one of the biggest
challenges in synthetic aperture radar (SAR) interferometry
(InSAR) processing. As an ill-posed problem, the performance of
the traditional algorithmic model-based 2-D PU algorithms is not
guaranteed to be correct with rapid ground deformation or topo-
graphic changes. An increasing number of remote sensing obser-
vations collected by different sensors (e.g., LiDAR and GPS)
provides new opportunities to assist the traditional 2-D InSAR
PU by reducing the nondeterminacy. In this article, we propose a
novel knowledge-aided PU (KAPU) approach. KAPU compiles
different prior knowledge from different sources with InSAR
observations simultaneously through an integer programming
model. More importantly, the mathematical proof demonstrates
that the constraint of the optimization model of KAPU is totally
unimodular, so KAPU can be efficiently solved without having
to have the constraint that the ambiguity number is an integer.
Theoretical analysis and extensive experimental results illustrate
that KAPU outperforms the existing model-based 2-D InSAR
PU algorithms on digital elevation model (DEM) generation and
surface deformation estimation.

Index Terms— Phase unwrapping (PU), prior knowledge,
synthetic aperture radar interferometry (InSAR), supervised
processing.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) interferometry (InSAR)
is one of the microwave remote sensing tools featured with

highly accurate measurement on the digital elevation model
(DEM) and ground deformation [1]–[4]. In essence, InSAR
measurements rely on the absolute phase changes between
SAR acquisitions from slightly different positions [5]. The
absolute phase consists of the wrapped phase and an ambiguity
number of 2π (1).

ϕ(s) = ψ(s)− 2k(s)π, k(s) ∈ integer (1)
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where k(s), ϕ(s), and ψ(s) represent the ambiguity number,
the wrapped phase and the absolute phase of the sth pixel in
the interferogram.

InSAR imagery only provides ϕ(s). Phase unwrapping (PU)
aims at solving ψ(s), which is an ill-posed problem since both
ψ(s) and k(s) are unknown. In order to assure an unambiguous
solution of ψ(s), traditional 2-D PU methods generally assume
that the absolute phase difference between the neighboring
pixels is less than π , which is called the phase continuity
assumption [5]. If it holds, the gradient of the ambiguity
number of ψ(s) is given by

k(s)− k(s − 1) = ∇(ϕ(s), ϕ(s − 1)) (2)

where the index s and s − 1 is the general description of the
neighboring pixels and ∇(·) is an operator

∇(ϕ(s), ϕ(s − 1)) =

⎧⎨⎨
⎨⎩

0, |ϕ(s)− ϕ(s − 1)| ≤ π

−1, ϕ(s)− ϕ(s − 1) > π

1, ϕ(s)− ϕ(s − 1) < −π.
(3)

It is clear that if the phase gradients of any pairs of
the neighboring pixels are correct in (2), we can simply
use a 2-D integration along an arbitrary path to unwrap the
phase. However, (2) will not work when the phase gradient
assumption is not sustained, especially when the coherence of
the interferogram is not ideal.

The existing 2-D PU methods can be generally classified
into the path-following-based and optimization-based cate-
gories [5]. Because the estimation of (2) may contain some
errors and the 2-D phase integration path is not unique,
the fundamental principle of the path-following-based 2-D
PU methods is to find the most likely integration path to
avoid the gradient errors in (2). Many PU concepts, theorems,
and methods follow this principle, e.g., the interferometric
residue [6], the envelope-sparsity theorem [7], [8], and the
branch-cut method [9]. The other category usually transforms
the PU problem into an over-determined formula [10] and
solves an over-determined equation using the optimization
model, e.g., the L p-norm model [11]. In fact, several 2-D PU
methods can be classified into either category. For example,
the minimum-cost flow (MCF) method [12] can be considered
as an MCF model in transportation theory [13] to determine
the integration path, or an L1-norm optimization to minimize
the difference between the gradients obtained by (2) and that
of the PU solution.

However, as an ill-posed problem, the aforementioned PU
methods mostly rely on the accuracy of (2). When overwhelm-
ing phase gradients cannot maintain phase continuity in the
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input interferogram, and there is no other prior knowledge, 2-D
PU algorithms may fail to resolve the phase map. On the other
hand, prior knowledge such as a rough spatial distribution
of the ground deformation can facilitate 2-D PU solution of
originally unsolvable interferograms. Some researchers have
demonstrated its feasibility. For example, Gao et al. [14]
applies an external DEM to achieve the PU results in large-
phase-gradient areas. In addition, Dai et al. [15] proposed a
model-assist PU method using a mining deformation model
to assist PU in a drastic subsiding mining site. Hu et al. [16]
used interferograms with relatively shorter temporal inter-
vals to obtain the first-order displacement velocities over a
rapid settling tailings impoundment to reduce the fringes in
interferograms with longer time spans, and then added the
first-order displacements back after a robust PU solution.
In this article, we propose a novel knowledge-aided InSAR PU
approach, abbreviated as KAPU. KAPU can incorporate dif-
ferent kinds of prior knowledge from different sources simulta-
neously through an integer programming model. Beyond that,
we provide the mathematical evidence that the constraint of
the optimization model of KAPU is totally unimodular (the
mathematical definition of the unimodularity is described in
Appendix). Therefore, KAPU can be efficiently solved without
bothering any constraints on the ambiguity number such as to
be an integer. In this case, KAPU can ensure the congruency
between the input interferometric fringes and the rewrapped
fringes of the PU results. Theoretical analysis and extensive
experimental results demonstrate that KAPU outperforms the
existing representative model-based 2-D PU algorithms on
InSAR DEM generation and surface deformation.

The rest of this article is organized as follows. Section II
reviews the traditional 2-D PU. Section III demonstrates the
KAPU method. Section IV illustrates the applications of
KAPU on the real and simulated interferometric datasets.
Section V makes a conclusion.

II. PU BACKGROUND AND PROBLEM ANALYSIS

In this section, we will review the traditional 2-D PU from
the viewpoint of the path-following-based method. Because
we cannot fully trust the phase gradient estimation from (2),
we need to find the optimal 2-D integration path to minimize
the effect caused by the potential phase gradient error. The
traditional way is to first compute the residues by integrating
the estimations obtained by (2) on every 2 × 2 pixel window
in the interferogram, and then to determine the integration path
deploying branch-cuts to balance the residues; the integration
path is not allowed to cross any branch-cut [5]. The thorny
issue is that there are usually multiple ways to balance the
residues given an interferogram but InSAR cannot provide
us enough information to determine which way is optimal.
Therefore, the branch-cut is also named as the “ghost line” [6].
Even worse, although sometimes we know the most desirable
way to balance the residues, the computation theory still does
not allow us to implement the idea effectively.

For example, in the floodplain along the Coari River
in Amazon, ALOS-2 PALSAR-2 ScanSAR images produce
condensed interferometric fringes [Fig. 1(a)]. To ensure that
the PU integration path climbs along the correct direction

Fig. 1. (a) Interferogram generated from ALOS-2 PALSAR-2 SAR images
over the floodplain in Amazon. (b) PU result obtained by MCF.

Fig. 2. (a) Interferogram generated from Sentinel-1 SAR images at the
Slumgullion landslide, CO, USA. (b) Interferogram generated from COSMO-
SkyMed SAR images at Lujiazui street, Shanghai, China.

of increasing phases, branch-cuts need to join the residues
in “clumps” rather than pairs [17]. However, most of the
traditional 2-D PU algorithms, except the L0-norm PU strat-
egy [17], prefer to build dipole cuts between each pair of
residues if there is no extra guidance from PU weights. The
unwrapped phase map obtained by the representative MCF
method [12] is not continuous in the floodplain [Fig. 1(b)].
Although the L0-norm PU strategy may give us the desired PU
result for such condensed fringes, the L0-norm PU problem
is an NP-hard problem even without measuring bias [18],
suggesting that any methods in polynomial time cannot gen-
erate an exact solution unless the P-problem set is equal to
the NP-problem set. A polynomial-time algorithm means that
its running time is upper bounded by a polynomial expres-
sion of the size of the input. The community of computer
science believes that the polynomial-time algorithm can be
practically implemented; however, if the P-problem set and the
NP-problem set are not equivalent (widely believed), the solu-
tion of NP-hard problems requires an exhaustive search, which
is significantly more difficult to compute than the polynomial-
time algorithm [19]. This represents a common challenge in
other InSAR applications. For example, Fig. 2(a) is the InSAR
map of the Slumgullion landslide (CO, USA) deformation
from Sentinel-1, and Fig. 2(b) is the InSAR map of the sky-
scrapers in Lujiazui street (Shanghai, China) from COSMO-
SkyMed. Although the landscapes and objects in Figs. 1 and 2
differ, their interferometric fringes share similar patterns which
require the phase integration paths to be along the “channel”
direction. Therefore, if we only expect to solve 2-D PU
problems through a model design based on the information
from the interferogram, it may be too challenge to design the
PU algorithm, i.e., assistance from the extra information is
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desired in practice. In the next section, we will propose a
novel Knowledge-Aided InSAR PU approach.

III. DESIGN OF KA

For simplicity, the general PU optimization model shown in
(4)–(6) will be used in the discussion.

arg min
k(s)

�
(s,s−1)

w(s, s − 1) · f (t (s, s − 1)) (4)

s.t. k(s)− k(s − 1)− ∇(ϕ(s), ϕ(s − 1)) = t (s, s − 1) (5)

k(s) ∈ integer (6)

where f (·) is the objective function, t (s, s−1) is the auxiliary
variable and w(s, s − 1) is a weight coefficient (any features
that characterize the quality of the input interferogram can be
used as w(s, s −1) [5]). The physical meaning of (4)–(6) is to
minimize the difference between the unwrapped phase gradient
k(s)−k(s −1) and the estimated gradient ∇(ϕ(s), ϕ(s −1)) to
obtain the PU result under the objective function f (·). Most
of the existing PU methods can be converted into (4)–(6) with
different f (·)s. For example, when f (·) is | · |, (4)–(6) will
be MCF.

It is straightforward that if the supplementary information
can cover the whole InSAR imaging area, and the accuracy
of the ambiguity number of the PU results estimated from
the prior knowledge is less than one interferometric phase
ambiguity (i.e., the supplementary information can clarify
the benchmark k(s) values of all pixels), the PU processing
will be non-challenging with the flawless k(s) values at
all pixels. However, usually, the supplementary information
to help a determination of the benchmark k(s) values is
only available at a limited number of pixels in the imagery
(e.g., at GPS sites); additionally, the supplementary informa-
tion may contain bias. Hence, we need to make full use of the
supplementary information with (4)–(6) to obtain an enhanced
PU solution, i.e.,

arg min
k(s)

�
(s,s−1)

w(s, s − 1) · f (t (s, s − 1))

+
�

u

w(u) · f (t (u)) (7)

s.t. k(s)− k(s − 1)− ∇(ϕ(s), ϕ(s − 1)) = t (s, s − 1) (8)

k(s), k(u) ∈ integer (9)

k(u)− K (u) = t (u), u ∈ K (10)

where t (u) is the auxiliary variable and w(u) is the weighted
coefficient for pixel u, and K is the index set in which the pix-
els have the supplementary information of a known ambiguity
number K (u). The high-accuracy LiDAR DEMs, deformation
models, pixel offset tracking results and GPS data may con-
tribute to an estimation of K . Taking the DEM generation as
an example, assuming that the vertical height h(u) of pixel u is
known from the supplementary information, K (u) is given by
round(h(u) · B · m)/(λ · r · sin(θ)), where r is the slant range
of the target, θ is the incidence angle, λ is the wavelength,
and B is the normal baseline. Here m is the transmit-receive
factor of the system: m = 1 represents the bistatic mode
and m = 2 represents the distributed mode. The comparison

Fig. 3. Schematic view of the PU network of KAPU.

between (4)–(6) and (7)–(10) shows that the supplemen-
tary information is added as an additional constraint. The
optimization theory demonstrates that the equality constraint
[i.e., (10)] may not hurt the convexity (i.e., solvability) of the
optimization model. The convex optimization can be solved
by polynomial-time algorithms, whereas the mathematical
optimization is generally NP-hard [20]. For example, the PU
method proposed in [10] or the L2-norm method with some
approximate conditions [11] can directly apply (10). However,
for PU methods, such as the MCF-framework-based methods,
(10) will destroy the total unimodularity of the constraints.
If the constraints of (7)–(10) are not totally unimodular,
(9) cannot be removed without hurting the optimality, i.e.,
(7)–(10) will be an integer programming problem [20]. Under
this condition, because of the existing of (9), the PU model
transforms from a P problem to an NP-hard problem, i.e., we
cannot find the optimal solution in polynomial time unless the
P-problem set is equal to the NP-problem set. On the other
hand, constraining the decision variables as the integer can
keep the congruency between the input interferometric fringes
and the rewrapped fringes of the PU result, i.e., overfreely
removing (9) will result in the discontinuous phase gradient
error spreading from the low-quality region to the whole
interferogram [5], [6].

To solve this issue, we introduce K (u)(u ∈ K ) into (4)–(6)
in a gradient form, i.e.,

arg min
k(s)

�
(s,s−1)

w(s, s − 1) · f (t (s, s − 1))

+
�
(u,v)

w(u, v) · f (t (u, v)) (11)

s.t. k(s)− k(s − 1)− ∇(ϕ(s), ϕ(s − 1))

= t (s, s − 1) (12)

k(s), k(u), k(v) ∈ integer (13)

k(u)− k(v)− (K (u)− K (v)) = t (u, v), u, v ∈ K

(14)

where t (u, v) is the auxiliary variable and w(u, v) is the
weighted coefficient for pixels u and v. Since (K (u)− K (v))
is more reliable than ∇(ϕ(s), ϕ(s − 1)), we can tolerate a
larger w(u, v) than w(s, s − 1). For example, if the supple-
mentary information is absolutely trustworthy, w(u, v) can be
larger than

�
(s,s−1) w(s, s − 1). It suggests that individual

t (u, v) has a greater impact on the objective function than all
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Fig. 4. (a) Reference unwrapped phase. (b) Simulated interferogram of (a). (c) PU result of (a) obtained by MCF. (d) Misfits between (a) and (c). (e) Network
of K with probability (1/50). (f) PU result of (a) obtained by KAPU. (g) Misfits between (a) and (f). RMSE represents the root-mean-square-error.

t (s, s − 1) together. The beauty of (11)–(14) is that its
equivalent constraint is totally unimodular as long as the
gradient field described in (14) is closed, even if the pixels
u and v are not neighbors in the regular grid-network. The
closed gradient field means that every pixel in this field is
included in a cycle, which is a nonempty trail in which the only
repeated vertices are the first and last vertices as defined in the
graph theory [13]. For instance, Fig. 3 shows the schematic
view when pixels p, q , and r have prior knowledge available,
so there will be three constraints in (14) given by k(p)−k(q)−
(K (p) − K (q)) = t (p, q), k(q) − k(r) − (K (q) − K (r)) =
t (q, r) and k(r)−k(p)−(K (r)−K (p)) = t (r, p). Fig. 3 states
that the PU model of KAPU is designed on a bi-level network
from (12) and (14), respectively, so the network generated by
K can provide more options on the ideal integration path
for PU. For example, besides the regular neighboring pixels
on a grid network, the pixel p has alternative options on the
integration path to reach pixels q or r . In addition, since
the supplementary information can break up the limits of the
phase continuity assumption, the gradient estimated by K
(i.e., K (u)− K (v)) can be any integer. Due to the total uni-
modularity, (14) is applicable in most MCF-framework-based
PU methods (e.g., MCF [12], statistical-cost, network-flow
PU algorithm (SNAPHU) [21] and minimum infinity-norm-
based method (MIN) [22]) without losing solvability. It is
noticeable that if the pixels in K are sparse, the triangulated
irregular network, usually an intermediate product of Persistent
Scatterer InSAR (PSInSAR) [23], can be used to generate the
phase gradient map to ensure path closure. The mathematical
proof of the total unimodularity of the constraints in (11)–(14)
is shown in Appendix. It is worth to mention that since
KAPU belongs to the PU optimization framework, which
compiles prior knowledge from different sources with InSAR
observations, its time and space complexities are different
considering different objective functions, i.e., f (·) in (11). For
example, if f (·) is | · |, its time and space complexities are
equivalent to those of the MCF method because the constraint
of KAPU is totally unimodular. However, because KAPU
considers the supplementary information, its problem size (the
number of the variables and constraints in (11)–(14) will be
larger than those of traditional 2-D PU methods.

IV. PERFORMANCE ANALYSIS

We test the effectiveness of KAPU with the L1-norm objec-
tive function (i.e., f (·) is | · |) using three experiments. In the
first experiment, we analyze the effectiveness of KAPU with
different sizes of K s. The second experiment focuses on the
performance of KAPU on the DEM generation from single-
pass TanDEM-X InSAR data. Finally, the third experiment
tests the PU accuracy of KAPU on the deformation detection
using Sentinel-1 InSAR data.

Fig. 4(a) shows the reference unwrapped phase in the
first experiment in the mountainous areas in the Isolation
Peak in Colorado, USA. Fig. 4(b) is the simulated noise-
free interferogram of Fig. 4(a). Fig. 4(c) is the PU result
of the representative MCF PU method. Fig. 4(d) shows
the misfits between Fig. 4(a) and (c). The interferometric
fringes in Fig. 4(b) is complicated even without phase noise,
which is apparently difficult for the traditional MCF PU
method simply based on the phase continuity assumption.
However, if we randomly pick up pixels in Fig. 4(a) with
a probability of (1/50) (i.e., one out of every 50 pixels) to
constitute a closed network of K [Fig. 4(e)], the consequent
KAPU result is shown in Fig. 4(f). Fig. 4(g) shows the
misfits between Fig. 4(a) and (f). The same reference point
and range of the color bar have been applied in the PU
results [Fig. 4(c) and (f)] and PU misfits [Fig. 4(d) and (g)]
(same for the following experiments). We can see that, with
knowledge-aided information of K , KAPU is superior to the
traditional MCF PU method. Fig. 5(a) and (b) illustrates the
closed PU networks of K with probabilities of (1/100) and
(1/500) respectively, and their PU results of KAPU are shown
in Fig. 5(c) and (d). Parts (e) and (f) of Fig. 5 are the misfits
between Figs. 4(a) and 5(c), and Fig. 4(a) and (d), respectively.
It can be seen that the smaller the size of K , the worse
the PU performance of KAPU will be. However, the accu-
racy of KAPU is still better than that achieved without the
assistance of K .

The second experiment is performed on a single-pass
TanDEM-X MB dataset acquired on October 21, 2012, for
DEM generation in Weinan, Shaanxi, China. Fig. 6(a) shows
the flattened and filtered interferogram of the study area.
This area is featured in mountainous and rugged landscapes.
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Fig. 5. (a) Network of K with probability (1/100). (b) Network of K with probability (1/500). (c) PU result of Fig. 4(a) obtained by KAPU with using (a).
(d) PU result of Fig. 4(a) obtained by KAPU with using (b). (e) Misfits between Fig. 4(a) and (c). (f) Misfits between Fig. 4(a) and (d).

Fig. 6. (a) TanDEM-X interferogram. (b) Reference PU result of (a) obtained from SRTM DEM. (c) PU result of (a) obtained by MCF. (d) PU result of
(a) obtained by SNAPHU. (e) PU result of (a) obtained by PUMA. (f) PU result of (a) obtained by KAPU. (g) Difference between (b) and (c). (h) Difference
between (b) and (d). (i) Difference between (b) and (e). (j) Difference between (b) and (f).

The phase continuity assumption cannot sustain at such a
steep topographic gradient, leading to an incorrect PU result
using the traditional 2-D PU methods. Fig. 6(b) shows the
reference unwrapped phase of Fig. 6(a) generated by the Shut-
tle Radar Topography Mission (SRTM) DEM. Fig. 6(c)–(f)
shows PU results obtained by the MCF [12], SNAPHU [21],
PU-max-flow (PUMA) [24], and our proposed KAPU

methods, respectively. The statistical cost mode of SNAPHU
is set to “TOPO,” the clique potential exponent of PUMA is
set to be 0.5. Here, we randomly select pixels in Fig. 6(b)
with a probability of (1/100) to generate a closed network
of K for KAPU. Fig. 6(g)–(j) shows the PU misfits between
Fig. 6(b)–(f). As a result of the complicated and dense interfer-
ometric fringes in Fig. 6(a), the phase continuity assumption
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Fig. 7. (a) Deformation speed estimated by UAVSAR pixel offset tracking. (b) PU result of Fig. 2(a) obtained by KAPU. (c) PU result of Fig. 2(a) obtained
by MCF.

Fig. 8. Sketch map illustrating the meanings of the variables in (15)–(18)
in which {(s, s − 1)|(((i, j), (i, j + 1)), ((i, j), (i + 1, j)), ((i + 1, j), (i + 1,
j + 1)), ((i, j + 1), (i + i, j + 1)))} and {(u, v)|((p, q), (q, r), (p, r))}.

is violated. Consequently, several obvious PU errors stick out
in some areas [Fig. 6(g)–(i)]. Because the phase gradients from
K can effectively rectify the incorrect gradients estimated
by (2), KAPU significantly outperforms three representative
2-D PU methods.

The third experiment is on the Slumgullion landslide defor-
mation mapping in Colorado, USA [25]–[28]. Slumgullion
is a natural laboratory with continuous motions for the past
300 years since its reactivation. The fastest segment occurs
at the narrow neck of the landslide at dozens of millimeters
per day in a short width of < 200 m. Such a high phase
gradient exceeds the InSAR resolvability of Sentinel-1 data at
12-day intervals. Taking advantage of the submeter-to-meter
high-resolution and four distinct flight lines of NASA/JPL’s
airborne UAVSAR system, the complete 3-D displacements
have been achieved by hybrid pixel offset tracking and InSAR
method [29] or the pixel offset tracking method alone [30]. The
latter method provides 3-D displacements at a higher resolu-
tion without sacrificing for InSAR coherence while the SNR is
lower due to less input. Here, we opt for the higher resolution
results to compute the corresponding displacement along the
Sentinel-1 line-of-sight (LOS) [Fig. 2(a)]. The two Sentinel
SAR images acquired on August 13, 2018, and August 25,
2018, are used to generate the interferogram [Fig. 2(a)].
In this experiment, the assisting knowledge is the deformation
speed at mm/day shown in Fig. 7(a) (the absolute phase can be
estimated using “deformation speed × time interval of SAR
images × (4π/Wavelength = 0.0555 m)”), which is achieved

by the UAVSAR pixel offset tracking method (resampled
and interpolated) [29]. With a random choice of pixels with
a probability of (1/100) for generating K of KAPU from
Fig. 7(a) and (b) is the PU result of the 12-day interferogram
[Fig. 2(a)] obtained by KAPU. Fig. 7(c) is the PU result
of Fig. 2(a) obtained by the MCF method. The comparison
between Fig. 7(b) and (c) shows that MCF is unable to
unwrap the phases continuously in this landslide area, but the
KAPU result illustrates a smooth spatial variation crossing the
active landslide body. It approves that the auxiliary information
provided by K can effectively assist (11)–(14) to pick up a
more robust phase integration path.

V. CONCLUSION

2-D PU is a critical step in InSAR processing. As an ill-
posed problem, how to reduce the nondeterminacy of 2-D
PU has been a longstanding challenge in InSAR applications.
To solve this issue, here we propose an effective knowledge-
aided 2-D PU framework (KAPU) to fuse the auxiliary
information from different remote sensing sensors from the
air and space. We would like to highlight that since the
constraint of KAPU is totally unimodular, this method ensures
the congruency between the input interferometric fringes and
the rewrapped fringes of the PU results. Three experimental
results are presented to verify that KAPU can incorporate the
elevation or deformation knowledge from other remote sensing
sensors and methods, so as to break up the limits of the phase
continuity assumption and to enhance the 2-D PU solutions in
previously theoretically and practically infeasible scenarios.
This improvement enormously broadens the scope of InSAR
applications.

In this article, KAPU is described from the perspective
of the optimization-based PU method. However, KAPU can
keep the fringe congruency, so KAPU can also be considered
as a path-following-based method. In the future, we would
like to investigate how to translate the residue concept with
the bi-level network applied in KAPU and to compile rep-
resentative path-following-based PU methods into the KAPU
framework.

APPENDIX

In Appendix, we will prove the total unimodularity of (12)
and (14) under the framework of MCF, i.e., f (·) is | · |.
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arg min
�
(s,s−1)

w(s, s − 1) · (t+(s, s − 1)+ t−(s, s − 1))+
�
(u,v)

w(u, v) · (t+(u, v) + t−(u, v)) (15)

s.t. t−((i, j + 1), (i, j))− t+((i, j + 1), (i, j))+ t−((i + 1, j + 1), (i, j + 1))− t+((i + 1, j + 1), (i, j + 1))

+ t−((i + 1, j), (i + 1, j + 1))− t+((i + 1, j), (i + 1, j + 1))+ t−((i, j), (i + 1, j))− t+((i, j), (i + 1, j)) =
∇(ϕ(i, j + 1), ϕ(i, j))+ ∇(ϕ(i + 1, j + 1), ϕ(i, j + 1))+ ∇(ϕ(i + 1, j), ϕ(i + 1, j + 1))+ ∇(ϕ(i, j), ϕ(i + 1, j))

(16)

t+(p, q)− t−(p, q)+ t+(q, r)− t−(q, r)+ t+(r, p)− t−(r, p) = 0 (17)

t+(s, s − 1) ≥ 0, t−(s, s − 1) ≥ 0, t+(u, v) ≥ 0, t−(u, v) ≥ 0 (18)

The unimodularity means that every square sub-matrix of the
equivalent coefficient matrix of (12) and (14) has a determinant
of −1, 0 or +1 [20]. We assume that the closure requirement
of K is satisfied by the triangulated irregular network; any
kind of closed network will not change the proof. Considering
the neighboring pixels shown in Fig. 8, each link in Fig. 8
corresponds to a constraint in (12) and (14). Since a decision
variable which is unrestricted in the absolute operation can be
modeled linearly by considering it as the difference of two
nonnegative variables [20], we can linearize (11) by allowing
for |t (s, s − 1)| = t+(s, s − 1) + t−(s, s − 1), t (s, s − 1) =
t+(s, s − 1)− t−(s, s − 1), |t (u, v)| = t+(u, v)+ t−(u, v) and
t (u, v) = t+(u, v)− t−(u, v), where t+(s, s − 1), t−(s, s − 1),
t+(u, v) and t−(u, v) are additional auxiliary variables. And
then if we add the constraints of the neighboring pixels in each
close set, (11)–(14) are equivalent to (15)–(18), as shown at
the top of the page.

As follows, we will prove the coefficient matrix of (16)
and (17) is total unimodular using the reduction to absurdity.
By contradiction, there are sub-matrix of the coefficient matrix
of (16) and (17) whose determinant is not −1, 0 or +1. Among
them, we consider B with the minimum matrix-size M × M .
Because every element in the coefficient matrix of (16) and
(17) is −1, 0 or +1, as M > 1, i.e., the number of the non-
zero elements in a column in the matrix B will be 0, 1 or 2.
It is clear that if there is a column without nonzero element,
the determinant of B is 0. If there is a column with one non-
zero element a ∈ {+1,−1}, the determinant of B will be the
product of a and its cofactor. Because the size of the cofactor
of a is less than M , its value must be −1, 0 or +1, so that
the product of a and its cofactor must be −1, 0 or +1. If each
column of B has two non-zero elements ai(i = 1, 2), and
we know a1 + a2 = 0, then B is singular whose determinant
is 0. Therefore, B does not exist so the coefficient matrix of
(16) and (17) is totally unimodular.
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