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Abstract
On February 6, 2023, a major earthquake of 7.8 magnitude and its aftershocks
caused widespread destruction in Turkey and Syria, causing more than 55,000
deaths, displacing 3 million people in Turkey and 2.9 million in Syria, and destroying
or damaging at least 230,000 buildings. Our research presents detailed city-scale
maps of landslides, liquefaction, and building damage from this earthquake, utilizing a
novel variational causal Bayesian network. This network integrates InSAR-derived
change detection with new empirical ground failure models and building footprints,
enabling us to (1) rapidly estimate large-scale building damage, landslides, and
liquefaction from remote sensing data, (2) jointly attribute building damage to
landslides, liquefaction, and shaking, (3) improve regional landslide and liquefaction
predictions impacting infrastructure, and (4) simultaneously identify damage degrees
in thousands of buildings. For city-scale, building-by-building damage assessments,
we use building footprints and satellite imagery with a spatial resolution of
approximately 30 meters. This allows us to achieve a high resolution in damage
assessment, both in timeliness and scale, enabling damage classification at the
individual building level within days of the earthquake. Our findings detail the extent
of building damage, including collapses, in Hatay, Osmaniye, Adıyaman, Gaziantep,
and Kahramanmaras. We classified building damages into five categories: no
damage, slight, moderate, partial collapse, and collapse. We evaluated damage
estimates against preliminary ground-truth data reported by the civil authorities.
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Our results demonstrate the accuracy of our classification system, as evidenced by
the area under the curve (AUC) scores on the receiver operating characteristic
(ROC) curve, which ranged from 0.9588 to 0.9931 across different damage
categories and regions. Specifically, our model achieved an AUC of 0.9931 for
collapsed buildings in the Hatay/Osmaniye area, indicating a 99.31% probability that
the model will rank a randomly chosen collapsed building higher than a randomly
chosen non-collapsed building. These accurate, building-specific damage estimates,
with greater than 95% classification accuracy across all categories, are crucial for
disaster response and can aid agencies in effectively allocating resources and
coordinating efforts during disaster recovery.
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Introduction

Information about building damage caused by earthquakes is critical for effective disaster
response and recovery mitigation efforts, given their significant impact on infrastructure
and human lives. Up to now, mapping out individual building damage in a large-scale seis-
mic zone has been beyond the capacity of rapid, regional loss models (e.g., USGS PAGER
system (Earle et al. 2009)), nor has satellite imagery been sufficiently exploited to rapidly
recognize and quantify such detailed impacts. Additionally, earthquake shaking often
induces ground failure, such as landslides and solid liquefaction, that can happen concur-
rently and colocate with damage caused by shaking (Bird et al. 2006; Fan et al. 2019).
These ground failures may further induce or exacerbate building damage. In this study, we
focus on the Mw 7.8 earthquake and its aftershocks that struck southern Turkey and Syria
in February 2023, causing extensive building damage and large-scale landslides and
liquefaction.

As of February 14, 2023, NASA’s Goddard Space Flight Center, utilizing satellite ima-
gery, identified more than 100 landslides in the areas of Turkey affected by the M7.8 main-
shock on February 6, 2023, and the M7.5 aftershock later that same day (SciTechDaily
2023). Additionally, thousands more landslides have been reported by early field recon-
naissance teams, indicating a more extensive ground-level impact than initially observed
from satellite data (Seismological Society of America 2023). Post-disaster reporting also
identified 760 sites with liquefaction and lateral spreading features (Maria et al. 2023;
Cetin et al. 2024; Ozkula et al. 2023). Both landslides and liquefaction exacerbate damage
to buildings and infrastructure, compounding the vast shaking-induced losses. Preliminary
investigations show that in all, this earthquake sequence destroyed or damaged more than
230,000 buildings, causing the vast majority of nearly 55 thousand lives lost, and hundreds
of thousands of injuries (U.S. Geological Survey 2023b,a). Immediate information on the
location and severity of disaster-induced ground failure and building damages is essential
for accurately understanding seismic impacts (Xu et al. 2022b; Wang et al. 2023a). Yet, the
vast scale of such a disaster—over 110,000 square kilometers and potentially millions of
buildings affected—dwarfs current strategies for quantifying such losses in any detail.
After the 2023 Turkey–Syria earthquake sequence, which is primarily characterized by the
M7.8 mainshock on February 6, 2023, followed by the significant M7.5 aftershock later on
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the same day, various methods were proposed to estimate building damage (CrisisReady
2023). Furthermore, existing regional loss models focus only on simulating the direct
effects of ground shaking on building damage without accounting for the additional conse-
quences of associated landslide and liquefaction hazards.

Remote sensing techniques, such as synthetic aperture radar (SAR) images, have been
widely utilized, primarily qualitatively, to provide high-resolution information for rapid
hazard and impact evaluations (Loos et al. 2020; Yun et al. 2015; Barras 2007; Li et al.
2023b; Xu et al. 2022b; Wang et al. 2023b; Yu et al. 2024; Wald et al. 2022b; Xu et al.
2022c). Interferometric SAR (InSAR) images, available within hours to days after an
event, have the potential to provide high-resolution information about post-disaster
ground failure or building damage, taken in all weather conditions and at any time of the
day or night (as opposed to optical satellite images), which are only useful when acquired
during the day and in cloud-free conditions (Lee 2005; Zhao and Lu 2018). After the Mw
7.8 earthquake sequence in southern Turkey, the Advanced Rapid Imaging and Analysis
(ARIA) team generated a damage proxy map (DPM), shown in Figure 1, depicting
earthquake-induced surficial changes that alter radar reflectivity. The DPM was generated
using data from descending track P21 using coherence between pre-earthquake SAR
images taken from September 19, 2022, to January 29, 2023, and post-earthquake SAR
images taken on February 10, 2023, by the Sentinel-1 satellites operated by the European
Space Agency (ARIA Data Share 2023b). A known limitation of DPM alone is that sig-
nificant radar differences depict complex sources of changes—including building damage,
ground changes, and noise (snow cover, vegetation, anthropogenic changes) and cannot

Figure 1. Damage proxy maps (DPM) generated by the AIRA team (ARIA Data Share 2023a) after the
M7.8 Turkey–Syria earthquake, covering the area between 36�62’E to 37�87’E longitude and 36�64’N to
37�66’N latitude. The grayscale gradient indicates the level of detected damage, where a value of 0
represents no damage and a value of 1 indicates maximum damage. A scale bar in the lower left
corresponds to 20 km, aiding in the estimation of affected areas’ extents.
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differentiate among these causes—limiting their utility and providing little guidance to
decision-makers.

Instead, using causal modeling techniques, our approach integrates single-type hazard
geospatial models with rich but noisy information from DPM to estimate building and
infrastructure damage jointly induced by ground shaking and ground failure. Our method
encodes existing USGS ground failure products (Zhu et al. 2015; Nowicki Jessee et al.
2018), which provide probability estimates of landslides and liquefaction in this earth-
quake, composite ground shaking of earthquake sequence, building damage, remote sen-
sing observations, and environmental noise in a causal graph and links them with causal
physical dependencies. In earlier work, we were able to show—by hindcasting with data
from previous earthquakes—the utility of our new variational inference, causal Bayesian
network model to not only separate and map out different earthquake-induced hazards
(shaking, landslides, and soil liquefaction) but also to then identify damage to buildings
and attribute their cause to each of these hazards in a probabilistic sense via the causal
graph (Xu et al. 2022b; Li et al. 2023a; Xu et al. 2022a).

After being notified about initial loss estimates due to this earthquake, we immediately
set out to apply those new tools to the preliminary models and available datasets needed
in our application, namely the USGS ShakeMap, landslide and liquefaction estimates, and
the DPM imagery, and obtain building damage estimates as well as updated landslides
and liquefaction estimates within two hours. Specifically, because we are able to leverage
recently improved building footprints (Microsoft 2023) and high-resolution (but noisy) sat-
ellite imagery, we can achieve unprecedented damage resolution with unparalleled timeli-
ness and scale, enabling response and aid agencies to make well-informed decisions on
resource allocation and coordination of recovery efforts in the aftermath of this and poten-
tially other similar disasters. With this approach, we provide our first-version large-scale
building damage estimates for the most moderately damaged areas, covering several major
cities in the seismic zone, including Hatay, Osmaniye, Gaziantep, Kahramanmarasx, and
Adıyaman, a preliminary version of which was provided to via a rapid report delivered to
the DesignSafe web portal on March 1, 2023 (Li et al. 2023b), aimed at informing ongoing
and future reconnaissance teams. Though we have not yet achieved a fully operational sys-
tem, here we show the potential for this strategy to provide rapid and detailed building
damage assessments in the immediate aftermath of any such disaster in the future. Full
validation of the results presented here awaits detailed ground-truth observations currently
being collected and analyzed by numerous reconnaissance field teams and being poured
over by careful, manual analyses of optical and radar imagery. We expect that comprehen-
sive landslide and liquefaction datasets being slowly and meticulously compiled at this time
will yield ground truth data that will allow us to not only fully quantify the accuracy of
our building damage estimates but also allow for a comprehensive comparison of our
model’s landslide and liquefaction estimates in areas without buildings.

Data and Methods

Our variational causal Bayesian inference framework allows us to jointly estimate ground
failure and building damage. We formulated a causal Bayesian network based on the
potential causal relationships among prior geospatial models, building footprints, DPM,
unobserved ground failure, and unobserved building damage, underlying the geological
processes. We present our Bayesian network in Figure 3. The framework outputs
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probability maps for ground failure, building damage, and parameters representing their
causal dependencies.

Prior Geospatial Models

The basic driver of building damage and the triggering of landslides and liquefaction is the
extent of and intensity of shaking, which we import directly from USGS ShakeMap (U.S.
Geological Survey 2023e). Given the large shaking footprint of both the large Mw 7.8 and
subsequent Mw 7.5 event as well as from 15 other Mw 5.5 aftershocks, USGS generated a
composite ShakeMap (U.S. Geological Survey 2023e) depicting the strongest shaking esti-
mate at every location from all of the events, which is shown in Figure 2. Because the

Figure 2. Composite ShakeMap, developed by the USGS ShakeMap team, depicting the strongest
shaking due to any of magnitude 5.5 and larger events of the sequence (U.S. Geological Survey 2023d)
the 2023 Turkey–Syria earthquake sequence, as of Feb. 19, 2023. The shaking intensity scale is based on
(Worden et al. 2012).
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composite ShakeMap more effectively represents the maximum shaking experienced than
any individual event, it can be used for better estimates of damage, landslides, and lique-
faction and is quite useful for earthquake engineering forensics, more generally (Wald
et al. 2022a).

In addition to ShakeMap, as part of the suite of their rapid, post-earthquake informa-
tion products (Wald et al. 2003), USGS added rapid ground-failure estimates—models of
the extent and probability of earthquake-shaking triggered landslides and liquefaction in
2018 (Allstadt et al. 2022). In addition to shaking, the models employ slope, susceptibility,
and soil conditions to map these probabilities (Zhu et al. 2015; Nowicki Jessee et al. 2018),
as shown in Figure 4. We use the existing USGS ground failure products as our prior land-
slide and liquefaction models in our Bayesian network, which are nodes pLS and pLF in
Figure 3.

InSAR Data and Damage Proxy Maps

Following the Turkey–Syria earthquake sequence, the ARIA team (ARIA Data Share
2023a) generated a DPM utilizing SAR images taken by the Sentinel-1A satellite operated
by the European Space Agency (ESA). The DPM we employ is shown in Figure 1. We uti-
lize DPM as our sensing observations because—despite being noisy—they provide high-
resolution (typically 30-meter pixels or finer) pre- and post-earthquake surfacial changes
related to earthquake-induced ground failure and building damage. The coverage of the
DPM is from 36.623 �E to 37.969 �E, from 36.641 �N to 37.662 �N, which covers the cities
analyzed in this paper: Kahramanmarasx, Osmaniye, Gaziantep, Adıyaman, and Hatay.

Figure 3. Causal Bayesian network that depicts the causal relationships among ground failure models,
pLS and pLF , latent hazards and impact, sensing observation yð Þ. N refers to N locations in a target area.
Green rectangles refer to the known variables. Blue circles refer to unobserved or unknown nodes. ai

are the unknown causal parameters that quantify the causal relations among parent nodes and child
nodes.
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We do not include cities located in regions where the DPM signal may be heavily impacted
by known noise sources, such as snow cover and high tectonic strain.

The Joint Ground Failure and Building Damage Estimation Method

Key obstacles to accurately estimating building damage after an earthquake include the
co-location of disaster-induced multiple subsequent ground failure and building damage,
as well as distribution shifting across different buildings Xu and Noh (2021). Additionally,
we necessarily employ relatively coarse, regional-scale, shaking, damage, and ground fail-
ure models. In fact, obtaining more detailed damage models is beyond the current state of
the art, owing to the lack of detailed building inventories (beyond footprints—structural

Figure 4. Example of ground failure models for landslide and liquefaction produced by the USGS (U.S.
Geological Survey 2023c) after the 2023 Turkey–Syria earthquake sequence. The legend colors represent
the probability of ground failure models.
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details are needed for each) and the uncertainties introduced not only by coarse shaking
estimates but also in the uncertain relationships between shaking and damage (fragility
curves) (Jaiswal et al. 2010). For ground failure estimates, in addition to shaking uncertain-
ties, relatively coarse slope values and approximate proxies for susceptibility limit accuracy
(Allstadt et al. 2022).

To address the limitations in joint estimation of building damage and ground failure,
we previously introduced a variational causal Bayesian inference framework (Xu et al.
2022b). Our approach leverages causal Bayesian networks to model the complex relation-
ships between building damage, ground failure, and other relevant factors. By encoding
prior knowledge and physical constraints into the network structure, we can capture the
causal dependencies among these variables.

Our model uniquely integrates coarser-scaled, physics-based prior models of shaking
and ground failure with detailed building footprints and the high-resolution, yet less
informed, changes detected in pre- and post-event DPM. The inference process involves
estimating the probability maps of unobserved variables and learning the causal coeffi-
cients through a variational algorithm. This allows us to discern the causes of detected
changes in the DPM by providing context from the prior models. For instance, damage in
low-slope regions is unlikely due to landslides, while damage in high-slope areas is not
attributed to liquefaction. Similarly, damage in urban regions with low probability of
ground failure is likely due to shaking.

The integration of multiple sources of information and joint modeling of building dam-
age and ground failure enables our framework to achieve a level of inference and specificity
in damage causation that is not possible with models assessing a single hazard or those not
updating their estimates based on the latest high-resolution imagery. By quantifying the
uncertainties associated with the predictions, our approach provides more accurate and
interpretable results for disaster management and risk assessment.

In this work, we model the causal Bayesian network, which is shown in Figure 3, to
represent the causal dependencies among building damage (BD), landslides (LS), liquefac-
tion (LF), and DPM. All datasets in this work are maps with size l = 1, :::,N . We define yl

as our observed variable (DPM) and xlh as the unobserved hazard nodes, where
h 2 LS,LF,BD. We assume these nodes are binary with values zero and one, where zero
represents no hazard happens and one represents hazard happens. We define a bias node
x0 that is always active x0 = 1ð Þ. This bias node allows its child nodes to be active even
when other parent nodes are inactive. P ið Þ represents parent nodes of a node i. All nodes
are linked by an arbitrary directed acyclic graph. We assume the underlying causal depen-
dencies from parent nodes to unobserved xlh as:

log p xh = 1jP xhð Þ, Ehð Þ
1�p xh = 1jP xhð Þ, Ehð Þ =w0h +wEhEh

+
P

k2P xhð Þ
wkhxk

ð1Þ

The formulation of underlying causal dependencies from parent nodes to DPM yð Þ is
assumed as:

log y=wEyEy +w0y +
X
i2P yð Þ

wiyxi ð2Þ
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where E is normally distributed.

We then employ a variational Bayesian inference method to estimate the posterior dis-
tributions of unobserved ground failure and building damage by maximizing the log- like-
lihood of observed variables. To guarantee our method’s scalability, variational inference
is carried out iteratively on a small batch of locations, which are randomly selected in each
iteration. For every location l, a variational distribution q X l

� �
is defined, which is further

decomposed across unobserved nodes as:

q X l
� �

=
Y
i

q xli
� �

=
Y
i

qli
� �xl

i 1� qli
� �1�xl

i ð3Þ

Given a map with a set of locations N , we proceed to derive a tight lower bound for the
log-likelihood as Xu et al. (2022b):

Lv ø
P
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Our ultimate goal is to optimize the bound in order to identify the best combinations of
posterior probabilities and causal dependency estimates. Since both the posteriors and
weights are unknown, we employ an expectation-maximization approach to tackle this
problem. During the expectation step, we obtain closed-form update equations for the
local posterior probabilities of LS, LF, and BD (denoted as qlh, where h 2 LS,LF,BD and
l 2 N ) by maximizing the lower bound and setting its gradients to zero. We compute this
gradient using the chain rule, and the optimal posterior follows the form described below:

qli =
1

1+ exp �T qP ið Þ, qS i, C ið Þð Þ, qC ið Þ, yl,w
� �� � ð4Þ
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where P ið Þ represents the set of parent nodes for node i, while C ið Þ denotes the set of child
nodes for node i. S ið Þ refers to the set of spouse nodes that have common child nodes with
node i. Function T is determined by the following form:

T ið Þ=
P

k2P ið Þ, n2f0, 1g

(
�1ð Þnqkf �1ð Þn w0i +wkið Þ+ w2

ei

2

� �

+ �1ð Þn 1� qkð Þf �1ð Þnw0i +
w2
ei

2

� �)

P
k2C ið Þ, k 6¼y, n2f0, 1g

(
�1ð Þnqkf ( �1ð Þn w0i +wikð Þ

+
w2
ek

2
) + �1ð Þn 1� qkð Þf �1ð Þnw0i +

w2
ek

2

� �)

�
2
P

m2S ið Þ, y wiywmyqm

2w2
ey

+
2y�2w0y�w2

eyð Þwiy

2w2
ey

ð5Þ

where f xð Þ= log 1+ exp xð Þð Þ to ensure that the posterior has the value between 0 and 1.

During the maximization step, we perform updates using stochastic gradient descent to
estimate the optimal weights. These updates utilize a mini-batch of data, which is randomly
selected from various locations. We employ stochastic variational inference to speed up the
computational process across a large, high-resolution map. Consequently, the edge weights
at iteration t + 1 are updated as follows:

w t + 1ð Þ =w tð Þ + r � ArL tð Þ wð Þ

We also employ a local pruning algorithm to speed up computations across a large area.
This approach is inspired by the realization that causal graphs in real-world scenarios are
generally sparse, meaning only a limited number of nodes remain active. For instance,
areas lacking building footprints will not experience building damage, making the building
damage nodes inactive. Consequently, we can eliminate these inactive nodes and retain
only those that are active and essential for updating parameters. For each location, we
first apply local pruning to generate a local model, and then implement stochastic varia-
tional inference on this model. Our theoretically derived variational bound is applicable to
any network that shares a similar structure and variable assumptions as ours. This allows
for easy adaptation of the stochastic variational inference algorithm by setting the poster-
ior qh of inactive nodes h to zero. By combining stochastic variational inference with local
pruning, we significantly lower both computational expenses and memory requirements.

Results

We visualize the results of our predicted building damage probability maps along with
comparisons with post-earthquake satellite images provided by Google Maps. The images
were captured after the earthquake that occurred on February 16, 2023. To enhance the
interpretation of building damage probability maps, we categorize the building damage
probability into four levels: slight damage (including no damage) (probability < 0.3),

10 Earthquake Spectra 00(0)



moderate damage (0.3\ probability < 0.65), partial collapse (0.65\ probability < 0.8),
and collapse (probability . 0.8). We adjust the threshold to align optimally with the lim-
ited available ground truth information; however, we expect that with a complete inven-
tory, we can later constrain these ranges quantitatively. The damage levels we used are
consistent with the EMS-98 intensity scale (Grünthal 1998).

We downloaded the ground truth information from the 2023 Turkey Earthquakes
Building Damage Assessment Map (hereafter referred to as ‘‘Damage Assessment Map’’),
which classified four building damage levels: slightly damaged (az Hasarlı), heavily dam-
aged (agır Hasarlı), needs to be demolished (acil Yıkılacak), and collapsed (yıkık). The
damaged state ‘‘needs to be demolished’’ is the same as ‘‘partially collapsed’’ in the EMS-
98 scale. They classified their damaged states according to the report by the Turkish
Ministry of Environment (Dilsiz et al. 2023). However, the damage state terminologies
used in Damage Assessment Map do not match with the terminologies in (Dilsiz et al.
2023; Grünthal 1998). Thus, we compared the data distribution from Damage Assessment
Map with the data from the Turkish Ministry of Environment (Dilsiz et al. 2023) and reas-
signed the damaged levels to the ground truth data we downloaded from Damage
Assessment Map. We find out the ratios of slightly damaged, need to be demolished/par-
tially collapsed, and collapsed in the ground truth data from Damage Assessment Map
match the ratios of corresponding damaged states in Dilsiz et al., 2023. The ratio of heav-
ily damaged in Damage Assessment Map does not match the ratio of either moderately
damaged or severely damaged in (Dilsiz et al. 2023). However, it matches the combination
of moderately and severely damaged in (Dilsiz et al. 2023). Thus, we reclassified heavily
damaged in Damage Assessment Map to be moderately/severely damaged. The final clas-
sification of damage states of our ground truth information is shown in Table 1. In this
analysis, we do not mark or label buildings inferred to be undamaged.

Figure 5 displays three zoomed-in locations in Kahramanmarasx, with Figure 5(a)–(c)
presenting the satellite images and Figure 5(d)–(f) showing the corresponding building
damage estimates (colored outlines) with ground truth damage observations (colored
dots). Our models assign higher probabilities to collapsed or moderately damaged build-
ings, consistent with the ground truth images. On the other hand, buildings not damaged
in the ground truth images, such as those in Figure 5(c), are assigned lower probabilities
in our estimates, which we classify to be slightly damaged. Our probability-based damage
maps accurately predict moderately damaged or collapsed buildings in the area shown in
Figure 5(e), as validated by the corresponding ground truth information and satellite
images in Figure 5(b). Separating undamaged and slightly damaged structures has been a
fundamental challenge with imagery alone (Bai et al. 2020), yet we have the advantage
here of employing shaking as a correlative, and we are working on improving prior build-
ing damage models, which will, hopefully, better inform even lower damage grades.

Table 1. Building damaged levels classification of ground truth information.

Original damage state in Turkish Original damage state in English Reclassified damage state in English

Az Hasarlı Slightly Damaged Slightly Damaged
Agır Hasarlı Heavily Damaged Moderately/Severely Collapsed
Acil Yıkılacak Needs to be Demolished Partially Collapsed
Yıkık Collapsed Collapsed
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Figure 6 visualizes our probability-based building damage estimations in three locations
with dense building distribution in Osmaniye. Our models accurately assign low probabil-
ities to buildings that are not moderately damaged, as validated by the corresponding satel-
lite images in Figure 6(b)(c) and also by the ground truth information presented in Figure
6(e)(f). Conversely, buildings that are collapsed or moderately damaged, as shown in Figure
6(a), are assigned high probabilities in our estimation, as demonstrated in Figure 6(d).

In Gaziantep, Figure 7 presents our building damage probability-based estimates in
three locations. The corresponding satellite images in Figure 7(a)–(c) demonstrate that
most buildings in these areas were not damaged or slightly damaged, which are assigned
low probabilities by our models in Figure 7(d)–(f). Finally, Figure 8 shows our building
damage estimates in three zoom-in locations in Adıyaman, where most buildings in the
areas of (f) are predicted to be partially collapsed or collapsed. According to a post-
earthquake report, extensive liquefaction was observed at the shores of lakes in Gölbasxı
(Adıyaman), in the _Iskenderun Port wharf area, and in Antakya near the Asi River

Figure 5. Predicted building damage probability maps in Kahramanmarasx. Figures (a)–(c)
show the satellite images, and Figures (d)–(f) present the corresponding building damage estimates with
ground truth information. The legend colors represent the building damage levels, as indicated. The
geographic extent of each figure is given in Table 4 and Figure 13(1).
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(PreventionWeb 2023). This suggests that the Adıyaman may have also experienced severe
liquefaction, which could have contributed to the moderate building damage and collapse
observed in our estimates.

Figure 9 shows three zoomed-in areas in the city of In Hatay with post-earthquake sat-
ellite images, our probability-based building damage estimates, and the ground truth
observations. Most buildings in these areas are moderately damaged or collapsed, which
our models assign high probabilities and classify them to be partially collapsed or col-
lapsed. Figure 10 depicts three zoom-in areas in _Iskenderun, Hatay, along with the corre-
sponding satellite images and our building damage probability maps. Our estimates
demonstrate that a large number of buildings in _Iskenderun are slightly damaged, while
some of them collapsed. Our results are consistent with the slight damage and collapse
observed in the satellite images taken on February 16 in Figure 10(a)–(c) and the ground
truth assignments presented in Figure 10(d)–(f). According to post-earthquake reports,
liquefaction manifestations were found from Antakya coastal plain up to Golbasi Lake to

Figure 6. Predicted building damage probability maps in Osmaniye. Figures (a)–(c) show the
satellite images, and Figures (d)–(f) present the corresponding building damage estimates with ground
truth information. The legend colors represent the building damage levels, as indicated. The geographic
extent of each figure is given in Table 4 and Figure 13(2).
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the northeast, suggesting that this region may have been particularly susceptible to the
effects of liquefaction (Maria et al. 2023). Thus, earthquake-induced liquefaction may
have contributed to the moderate damage and collapse observed in many buildings in
Adıyaman. Integrating our building damage estimates with observations from post-
earthquake reports enhances our understanding of the damage causes in the region.
Furthermore, a detailed analysis that correlates these estimates with field reports of lique-
faction can shed light on the underlying reasons for the moderate damage and collapses
that were observed in Adıyaman. This approach enables a more nuanced interpretation of
the factors contributing to the observed patterns of destruction.

We can evaluate our estimates with the preliminary building damage investigation
results from the Türkiye Ministry of Environment, Urbanization, and Climate Change
from Damage Assessment Map. The Ministry classified building damage into four cate-
gories: slightly damaged, heavily damaged, needs to be demolished, and collapsed. We
obtained a total of 198,633 data points corresponding to the four categories of building

Figure 7. Predicted building damage probability maps in Gaziantep. Figures (a)–(c) show the
satellite images, and Figures (d)–(f) present the corresponding building damage estimates with ground
truth information. The legend colors represent the building damage levels, as indicated. The geographic
extent of each figure is given in Table 4 and Figure 14(1).
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damage from Damage Assessment Map, which show that there are 140,200 slightly dam-
aged buildings, 42,482 heavily damaged buildings, 5714 partially collapsed (need to be
demolished) buildings, and 10,237 collapsed buildings in the affected region. The reported
percentages of each building damage level in our studied regions are given in Table 2. We
further compare our probability maps from Damage Assessment Map with the prelimi-
nary official investigation results. The onsite building damage investigation and assess-
ment activities are still ongoing as of mid-April 2023, so the reported damage numbers are
far from complete.

We evaluated our estimates by plotting the receiver operating characteristics (ROC)
curve and calculating the area under the ROC curve (AUC) values. The ROC curve shows
the relationship between the true positive rate (TPR) and the false positive rate (FPR) of a
binary classifier system, with TPR representing the probability of correctly predicting
damage given that damage has occurred and FPR being the probability of incorrectly pre-
dicting damage given that no damage has occurred. A model with an AUC near 1

Figure 8. Predicted building damage probability maps in Adıyaman. Figures (a)–(c) show the
satellite images, and Figures (d)–(f) present the corresponding building damage estimates with ground
truth information. The legend colors represent the building damage levels, as indicated. The geographic
extent of each figure is given in Table 4 and Figure 14(2).
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indicates perfect separability between positive and negative classes. The study’s framework
and benchmark methods output probability estimates of ground failure or building dam-
age, which are then categorized as ‘‘no damage’’ or ‘‘damage’’ using a threshold. Since the
threshold varies between events, the ROC curve visualizes how the system’s performance
changes under varying thresholds ranging from 0 to 1. The ROC curves and AUC values
for multi-categorical building damage models for the 2023 Turkey–Syria earthquake
sequence are presented in Figure 11 and Table 3, respectively. The AUC results of our
building damage models, which are all above 0.95, suggesting that the posterior models
generated by our algorithm are able to make reasonably accurate estimates. Furthermore,
in order to demonstrate the efficiency of our proposed framework with large-scale applica-
tions, we have assessed the computational efficiency of our model. Our variational infer-
ence framework can efficiently process estimates for the most moderately damaged areas
(with covered areas of 285 km2, 13,560 km2, and 10,309 km2), including Hatay, Osmaniye,
Gaziantep, Kahramanmarasx, and Adıyaman, producing accurate results with computa-
tional times ranging from 2 to 200 minutes. This represents a significant improvement in

Figure 9. Predicted building damage probability maps in Hatay. Figures (a)–(c) show the
satellite images, and Figures (d)–(f) present the corresponding building damage estimates with ground
truth information. The legend colors represent the building damage levels, as indicated. The geographic
extent of each figure is given in Table 4 and Figure 15(1).
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efficiency, potentially reducing analysis time by hours or even days compared with most
current methods, which generally do not offer the same level of resolution or detailed
building-by-building assessments.

Figure 10. Predicted building damage probability maps in _Iskenderun. Figures (a)–(c) show
the satellite images, and Figures (d)–(f) present the corresponding building damage estimates with ground
truth information. The legend colors represent the building damage levels, as indicated. The geographic
extent of each figure is given in Table 4 and Figure 15(2).

Table 2. Reported building damage levels percentages in regions studied. Reported data was obtained
from ground-based reports.

Region Slightly damaged Moderately/severely Partially collapsed Collapsed
count (%) damaged count (%) count (%) count (%)

Adıyaman 62.06 27.02 2.46 8.46
Gaziantep and
Kahramanmarasx 70.95 20.30 3.10 5.65
Hatay and Osmaniye 56.33 30.51 4.21 8.95
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Other than the AUC values, Figure 12 shows the confusion matrices for the assessment
of our model’s performance. The inclusion of confusion matrices alongside ROC curves
for assessing a model’s performance in classifying earthquake damage to buildings offers a
detailed perspective on its capabilities, essential for real-world applications. The confusion
matrices for the Hatay, Osmaniye, and other areas, Kahramanmaras cx and Gaziantep area,
and the Adıyaman area demonstrate the model’s effectiveness in accurately identifying
instances of slight damage and partial collapse. For example, in the Hatay and Osmaniye
area, slight damage was correctly identified in 92.3% of cases, while partial collapse was
accurately detected in 87.6% of instances. The model misclassified only 4.8% of slight
damage cases as moderate damage. These high true positive rates and low misclassification
percentages suggest the model’s ability to distinguish these damage levels effectively.

Nevertheless, the matrices also uncover some confusion between adjacent severity
classes. In the Kahramanmarascx and Gaziantep area, 18.2% of moderate damage cases
were misclassified as slight damage. In Adıyaman, 12.5% of complete collapse cases were
incorrectly classified as partial collapse, highlighting an area for model refinement, espe-
cially in differentiating the highest severity class.

Figure 11. ROC curves of the Turkey earthquake building damage posterior. Figure (a) shows
the ROC curve of the posterior in Hatay, Osmaniye, etc. area; (b) displays the ROC curve of the
posterior in Kahramanmarasx and Gaziantep area; and (c) presents ROC curve of the posterior in
Adıyaman area.

Table 3. The evaluation of our framework performance when predicting binary and multi-categorical
building damage levels.

Cases AUCPost

Slightly damaged posterior in Figure 11(a) 0.9840
Moderately/severely damaged posterior in Figure 11(a) 0.9890
Partial collapsed posterior in Figure 11(a) 0.9888
Collapsed posterior in Figure 11(a) 0.9931
Slightly damaged in Figure 11(b) 0.9899
Moderately/severely damaged posterior in Figure 11(b) 0.9867
Partial collapsed posterior in Figure 11(b) 0.9862
Collapsed posterior in Figure 11(b) 0.9875
Slightly damaged posterior in Figure 11(c) 0.9588
Moderately/severely damaged posterior in Figure 11(c) 0.9726
Partial collapsed posterior in Figure 11(c) 0.9613
Collapsed posterior in Figure 11(c) 0.9807
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The comprehensive assessment provided by the high AUC values in the ROC curves,
ranging from 0.9588 to 0.9931 across all regions and damage categories, corroborates the
model’s overall robust predictive performance. Specifically, for the collapsed category,
AUC values were 0.9931, 0.9875, and 0.9807 for Hatay/Osmaniye, Kahramanmarasx/
Gaziantep, and Adıyaman areas respectively. This nuanced understanding is crucial for
the model’s deployment in disaster response scenarios, where accurate damage classifica-
tion directly impacts resource allocation and response strategies. The ROC curves were
derived using a one-vs-all (OvA) approach for multi-class classification, which involves
computing a separate binary classifier for each class against all others. This method allows
for the detailed evaluation of each class’s ability to be distinguished from the rest, provid-
ing a clear overview of the model’s performance across different damage levels. By

Figure 12. Confusion matrices of the Turkey earthquake building damage posterior. Figure
(a) shows the confusion matrix of the posterior in Hatay, Osmaniye, etc. area; (b) displays the confusion
matrix of the posterior in Kahramanmarasx and Gaziantep area; and (c) presents confusion matrix of the
posterior in Adıyaman area.

Table 4. This table contains the extents of our building damage estimates visualization in Figures 5–8.

Figure Extent

Figure 5(a)(d) from 36.927 �E to 36.929 �E, from 37.568 �N to 37.575 �N (shown in Figure 13(1)(a))
Figure 5(b)(e) from 36.921 �E to 36.929 �E, from 37.569 �N to 37.575 �N (shown in Figure 13(1)(b)
Figure 5(c)(f) from 36.902 �E to 36.908 �E, from 37.588 �N to 37.594 �N (shown in Figure 13(1)(c))
Figure 6(a)(d) from 36.252 �E to 36.266 �E, from 37.081 �N to 37.084 �N (shown in Figure 13(2)(a))
Figure 6(b)(e) from 36.241 �E to 36.244 �E, from 37.069 �N to 37.273 �N (shown in Figure 13(2)(b))
Figure 6(c)(f) from 36.240 �E to 36.243 �E, from 37.063 �N to 37.067 �N (shown in Figure 13(2)(c))
Figure 7(a)(d) from 37.382 �E to 37.385 �E, from 37.068 �N to 37.072 �N (shown in Figure 14(1)(a))
Figure 7(b)(e) from 37.371 �E to 37.373 �E, from 37.057 �N to 37.059 �N (shown in Figure 14(1)(b))
Figure 7(c)(f) from 37.383 �E to 37.387 �E, from 37.081 �N to 37.084 �N (shown in Figure 14(1)(c))
Figure 8(a)(d) from 38.258 �E to 38.262 �E, from 37.767 �N to 37.771 �N (shown in Figure 14(2)(a))
Figure 8(b)(e) from 38.283 �E to 38.286 �E, from 37.760 �N to 37.763 �N (shown in Figure 14(2)(b))
Figure 8(c)(f) from 38.272 �E to 28.275 �E, from 37.756 �N to 37.759 �N (shown in Figure 14(2)(c))
Figure 9(a)(d) from 36.155 �E to 36.158 �E, from 36.205 �N to 36.208 �N (shown in Figure 15(1)(a))
Figure 9(b)(e) from 36.167 �E to 36.169 �E, from 36.201 �N to 36.203 �N (shown in Figure 15(1)(b))
Figure 9(c)(f) from 36.139 �E to 36.141 �E, from 36.207 �N to 36.209 �N (shown in Figure 15(1)(c))
Figure 10(a)(d) from 36.147 �E to 36.154 �E, from 36.565 �N to 36.572 �N (shown in Figure 15(2)(a))
Figure 10(b)(e) from 36.176 �E to 36.180 �E, from 36.575 �N to 36.579 �N (shown in Figure 15(2)(b))
Figure 10(c)(f) from 36.193 �E to 36.197 �E, from 36.571 �N to 36.575 �N (shown in Figure 15(2)(c))
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clarifying the evaluation process through this approach, we gain further insights into the
model’s classification capabilities, enabling a more informed assessment of its practical
utility in earthquake-affected areas.

While our model demonstrates strong overall performance, it’s important to note that
this performance is not uniform across all regions studied. In particular, we observed some
variations in model accuracy between different geographical areas. The analysis reveals a
notable discrepancy in model performance across different regions, with the
Kahramanmarasx and Gaziantep area showing relatively worse results compared with
other regions. For instance, the AUC value for the collapsed category in Kahramanmarasx
and Gaziantep (0.9875) is lower than that of Hatay/Osmaniye (0.9931), indicating a
slightly reduced ability to accurately classify collapsed buildings in this area. Several fac-
tors may contribute to this regional variation in model performance: (1) The
Kahramanmarasx and Gaziantep area may have more complex or varied geological condi-
tions compared with other regions. This could lead to more nuanced ground motion pat-
terns and subsequent building damage, which our model might find challenging to capture
accurately. (2) The coverage and accuracy of building footprint data may vary between

Figure 13. Map illustrating the study areas within the region affected by ground shaking from the
earthquake. Figure (1) shows the study area in Kahramanmaras: (a) corresponds to Figure 5(a)(d), (b)
corresponds to Figure 5(b)(e), and (c) corresponds to Figure 5(e)(f). Figure (2) shows the study area in
Osmaniye: (a) corresponds to Figure 6(a)(d), (b) corresponds to Figure 6(b)(e), and (c) corresponds to
Figure 6(e)(f).

Figure 14. Map illustrating the study areas within the region affected by ground shaking from the
earthquake. Figure (1) shows the study area in Gaziantep: (a) corresponds to Figure 7(a) and (d), (b)
corresponds to Figure 7(b) and (e), and (c) corresponds to Figure 7(e) and (f). Figure (2) shows the study
area in Adıyaman: (a) corresponds to Figure 8(a) and (d), (b) corresponds to Figure 8(b) and (e), and (c)
corresponds to Figure 8(e) and (f).
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regions. Since we utilize building footprints in our pruning strategy to improve computa-
tional speed, the accuracy of building footprint data may influence the accuracy of our
estimation results. If the Kahramanmarasx and Gaziantep area has less complete or less
accurate building footprint data, this could significantly impact our model’s ability to cor-
rectly identify and classify damaged buildings. Areas with more comprehensive building
footprint data would likely yield better results. (3) There might be less comprehensive or
less accurate ground truth data available for the Kahramanmarasx and Gaziantep region,
affecting both model training and validation.

Discussion

We employed our recently developed strategy to extract and portray building damage for
the devastating Türkiye earthquake sequence and, for the first time, applied our tools in
response mode, utilizing rapidly evolving models and data sources. Due to the availability
of the dataset, our current methodology primarily estimates cumulative damage, employ-
ing the USGS’ composite damage evaluation framework. The damage proxy maps are
obtained by comparing the coherence change of pre-earthquake and post-earthquake SAR
images, mainly capturing the accumulative/mixed surface ground changes between these
periods. We utilized SAR images from Sentinel-1 collected on February 10, 2023, captur-
ing the ground surface changes from September 19, 2022, to February 10, 2023, which
includes both the devastating M 7.8 mainshock and M 7.5 aftershock.

Figure 16 presents a comprehensive matrix of fragility curves for building structures
across three different geographical regions (Adıyaman area, Kahramanmarasx and
Gaziantep area, and Hatay, Osmaniye, etc. area) and under three contrasting seismic con-
ditions: severe landslides, severe liquefaction, and neither condition. Each panel within the
matrix displays a fragility curve, marked by different levels of building damage—No/
Slight Damage, Moderate Damage, Partial Collapse, and Complete Collapse—based on
the peak ground acceleration (PGA) expressed as a percentage.

The graphs illustrate that buildings in areas with severe liquefaction or landslides exhibit
a higher likelihood of damage at lower PGA levels, showcasing steeper slopes in these
curves, which suggests a quicker escalation in damage as seismic intensity slightly increases.
It is observed that the fragility curves for Kahramanmarasx and Gaziantep, as well as for

Figure 15. Map illustrating the study areas within the region affected by ground shaking from the
earthquake. Figure (1) shows the study area in Hatay: (a) corresponds to Figure 9(a) and (d), (b)
corresponds to Figure 9(b) and (e), and (c) corresponds to Figure 9(c) and (f). Figure (2) shows the study
area in Iskenderun: (a) corresponds to Figure 10(a) and (d), (b) corresponds to Figure 10(b) and (e), and
(c) corresponds to Figure 10(c) and (f).

Li et al. 21



Hatay and Osmaniye, are steeper compared with those in Adıyaman. This implies that
buildings in the former regions are more susceptible to damage at lower seismic intensities,
likely due to factors such as local soil conditions, building practices, and previous seismic
activities. The presence of severe liquefaction or landslides significantly exacerbates this
vulnerability, resulting in a more pronounced damage probability even at lower intensities.

From the fragility curves, we can see that buildings are generally more likely to sustain
moderate damage in areas with severe geological disturbances. This often corresponds to
regions with high susceptibility to either landslides or liquefaction, which typically leads to
a greater impact on the structural capacity of buildings. Furthermore, we only fit scenarios
with severe landslides and severe liquefaction separately, not in combination, because land-
slides and liquefaction rarely occur simultaneously. Landslides usually result from slope
failure induced by seismic activity, whereas liquefaction occurs in saturated soils under the
stress of seismic waves. By analyzing these phenomena separately, we can more accurately
gauge their distinct impacts on building integrity during earthquakes.

Figure 16. Building damage probability estimation and fragility curve matrix for different
locations and conditions. This matrix illustrates the fragility curves derived from building damage
probability estimations in three distinct regions, each subjected to various seismic conditions: severe
landslide, severe liquefaction, and stable ground without severe landslide or liquefaction. The rows
categorize the regions while the columns differentiate the conditions under which each fragility curve is
drawn.
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With the improvement of the revisiting frequency of SAR satellites, we expect to obtain
more fine-grained temporal SAR images, like those from NASA-ISRO SAR (NiSAR),
which will help us better distinguish the causes in the time domain using the same technol-
ogy. We acknowledge the importance of detailed time-series data in distinguishing the
impacts of each seismic event more clearly. As satellite technology advances, allowing for
more frequent revisits, we expect to obtain finer temporal resolution in SAR images, such
as those from NiSAR. This improvement will enhance our ability to analyze the temporal
evolution of ground movements and correlate them with damage patterns, thereby improv-
ing the specificity and accuracy of our damage assessments. We showed that Damage
proxy maps provide critical information at a regional scale yet provide building-specific
damage. With these results, we are now more confident that we can generalize our method
to other applications involving causal relations among compound ground failure and
building damage caused by disasters, such as hurricanes and flooding.

We also quantified the causal relations between building damage and other disaster-
induced ground failure. Ground shaking is always the most critical causal factor in the
occurrence of building damage due to an earthquake (Xu et al. 2022b). However, we find
that liquefaction and land subsidence at Golbasi, Turkey, also contributed substantially to
building damage. Alternatively, in other events we studied earlier, such as the 2018
Hokkaido, Japan earthquake, and the 2016 Central Italy earthquake, notable contribu-
tions to building damage were due to landslides (Xu et al. 2022b), demonstrating that
earthquake-induced building damage distribution patterns may differ significantly from
event to event. Therefore, to accurately estimate hazards and their impacts, it is crucial to
integrate prior knowledge of these hazards and quantify the causal relationships between
different sources of building damage. This approach greatly benefits the estimation pro-
cess by providing a more comprehensive understanding of the complex interactions among
various hazards and their contributions to building damage.

It is important to note that our proposed method is capable of identifying the causes of
damage even without prior knowledge from the field about which areas were subject to
specific hazards such as liquefaction and landslides. However, incorporating prior knowl-
edge, when available, can further enhance the accuracy and interpretability of the results
by providing additional constraints and validating the inferred causal relationships. To
quantify the contribution of prior knowledge to the model’s predictive accuracy, we con-
duct an ablation study. This involves running the model with and without prior models of
liquefaction and landslides. By comparing the model’s performance in these two scenarios,
we can assess the impact of prior knowledge on its ability to identify the causes of damage.
It is worth noting that we only have ground truth data for building damage, and not for
the specific hazards of liquefaction and landslides. Therefore, our ablation study focuses
on evaluating the model’s performance in estimating building damage under different input
conditions, using the AUC as our accuracy metric.

As shown in Table 5, the full model achieves an AUC of 0.9840 for slightly damaged
posterior, 0.9890 for moderately/severely damaged posterior, and 0.9888 for partial col-
lapsed posterior in the Hatay, Osmaniye, etc. area. When we remove the prior models for
landslides and liquefaction, the AUC values decrease to 0.8772, 0.8202, and 0.8104, respec-
tively. This indicates that prior knowledge of these hazards contributes significantly to the
model’s predictive accuracy. Moreover, when we remove only the prior model for land-
slides or liquefaction, the AUC values fall between those of the full model and the model
without any prior knowledge. This suggests that both landslides and liquefaction prior
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models provide valuable information for estimating building damage, and their contribu-
tions are complementary.

Despite the absence of ground truth data for liquefaction and landslides, this ablation
study provides valuable insights into the robustness and generalizability of our approach.
It demonstrates the model’s ability to leverage available information, even when direct
measurements of certain hazards are lacking, to estimate the causes and extent of building
damage. The results highlight the importance of incorporating prior knowledge when
available, while also showcasing the model’s capability to provide meaningful insights into
the underlying factors contributing to damage, even in situations where prior field knowl-
edge may be limited.

A key limitation of our method is the neglect of spatial influence from neighboring loca-
tions. For example, if a location is near a mountainous area with severe landslides, it will
also tend to have severe landslides and building damage. However, our method assumes all
locations in a map are independent without considering the influence of neighboring loca-
tions, which may result in inaccuracies.

Satellite imagery has become a valuable tool in identifying ground conditions in remote
areas that are not easily accessible by disaster responders. With the improving timeliness
and quality of such imagery, we recognized that tools are needed to fully exploit their
potential for post-disaster situational awareness, response, and recovery. High-resolution
images can also be generated by airborne SAR (Ekhtari and Glennie 2017), in a timely
and efficient way. Our methodology can be combined with alternative high-resolution sat-
ellite images produced after a disaster to provide timely loss estimates. We have mapped
out the natural evolution of our strategy that will further allow for random, timely ground
failure and damage observations as further constraints in the form of immediate, event-
specific training data.

Table 5. This table presents a comparison of the model’s performance in Hatay, Osmaniye, etc. area
across different configurations where specific input data related to prior model of liquefaction and
landslides are systematically omitted.

Model variant Cases AUC

Full Model Slightly damaged posterior 0.9840
Moderately/severely damaged posterior 0.9890
Partial collapsed posterior in Hatay, Osmaniye, etc. area 0.9888
Collapsed posterior 0.9931

No Landslides Prior Model Slightly damaged posterior 0.8772
Moderately/severely damaged posterior 0.8202
Partial collapsed posterior in Hatay, Osmaniye, etc. area 0.8104
Collapsed posterior 0.7914

No Liquefaction Prior Model Slightly damaged posterior 0.8717
Moderately/severely damaged posterior 0.8510
Partial collapsed posterior in Hatay, Osmaniye, etc. area 0.8475
Collapsed posterior 0.8169

No Landslide and
Liquefaction Prior Model

Slightly damaged posterior 0.7289

Moderately/severely damaged posterior 0.7261
Partial collapsed posterior in Hatay, Osmaniye, etc. area 0.7035
Collapsed posterior 0.7242
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Regarding the availability of publicly accessible high-quality satellite imagery for dam-
age assessment in the 2023 Turkey–Syria earthquake, it can be considered typical com-
pared with other recent earthquakes and natural disasters. For the 2023 Turkey–Syria
earthquake, DPM were generated by the NASA Advanced Rapid Imaging and Analysis
(ARIA) team using the Copernicus Sentinel-1 satellites operated by the European Space
Agency (ESA) only four days post-event. This quick turnaround is representative of the
capabilities and response times that have become increasingly common in the wake of sig-
nificant natural disasters. Similarly, other earthquakes have benefitted from the availability
of DPM generated by Sentinel-1, Japanese ALOS-2 satellite, NASA, NiSAR, and other
commercial sources, illustrating a consistent trend towards rapid, accessible high-quality
satellite imagery in disaster response scenarios.

In terms of ground failure models, the USGS routinely provides open-sourced ground
failure models following significant earthquakes, which have been integral in assessing
landslides and liquefaction risks. The USGS Ground Failure product offers near-real-time
estimates of landslide and liquefaction hazards after significant earthquakes, highlighting
the growing standard of these datasets for post-disaster analysis. Moreover, the wide-
spread use of open-source platforms like OpenStreetMap has democratized the accessibil-
ity of detailed building footprints, which enhances the granularity of damage assessments.
Combining these resources is a methodological approach that is becoming standardized in
the field of disaster response and remote sensing.

Moreover, regarding the application of these methods to lower-resolution imagery
(ranging from 5 meters to 30 meters), our previous work has explored this question in Xu
et al. (2022b). The effectiveness of damage detection and assessment using lower-resolution
imagery can vary but still provides valuable insights, especially when high-resolution ima-
gery is not available. It is important to note that while high-resolution data typically yield
more precise results, lower-resolution imagery can still be quite informative, especially
when analyzed with robust models that can interpret broader patterns of damage.

Conclusions

In this study, we predict building damage in the 2023 Turkey–Syria earthquake sequence
by jointly estimating landslides, liquefaction, and building damage with consideration of
their complex causal dependencies. We focus our approach on the simultaneous assess-
ment of earthquake-induced building damage, landslides, and liquefaction without the
need for ground truth data. Further, by leveraging building footprints, satellite imagery,
and the shaking and ground failure models produced by the USGS as our prior hazard
models, our approach achieves unprecedented damage resolution with unparalleled timeli-
ness and regional scale, enabling well-informed decisions for reconnaissance, response,
and recovery.

We validate our building damage probability maps by comparing them with optical sat-
ellite images from Google Maps taken on February 16, immediately after the earthquake
sequence as well as against the building damage reports from Türkiye Ministry of
Environment, Urbanization, last updated on 20 February 2023. Our results demonstrate
the accuracy of our rapid building damage and multi-hazard estimation method. We
released our building damage maps as early as ten days after the mainshock through
ArcGIS online, and our initial results have been incorporated to assist front-line respond-
ing through Afet Platformu (https://afetharitasi.org/) and shared with reconnaissance
teams via the DesignSafe (https://www.designsafe-ci.org/) data portal. According to our
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assessment, Kahramanmarasx and Gaziantep have experienced moderate damage, whereas
a majority of the buildings in Hatay, Osmaniye, and Adıyaman have undergone moderate
damage or collapse. Buildings in the Kahramanmarasx area were mainly damaged by
ground shaking but in Hatay and Adıyaman, liquefaction contributed considerably to
building impacts. Our building damage model, with AUC results over 0.95, demonstrates
that the posterior models created by our algorithm can produce accurate and highly useful
building damage estimates. Furthermore, our method is capable of delivering post-disaster
estimates for landslides and liquefaction. Initial comparisons indicate that our posterior
landslide models supply a greater level of detail compared with the prior model, yet we
await detailed survey observations now underway to fully assess their accuracy.

As currently deployed, we have been able to show that our method is able to produce
accurate results rapidly, yet it is not by any means fully operational. We envision operatio-
nalizing our system to improve its timeliness, integrating ground-truth observations, and
iterating as such reports evolve in order to update and refine our estimates further. Our
study offers a promising approach for rapidly estimating building damage and ground
failure after earthquakes using probabilistic models and causal relations. Such estimates
can help with general situational awareness yet provide potentially much more accurate,
actionable building-by-building damage inferences than earlier strategies. Lastly, the meth-
odology we developed can be generalized to other types of disasters, such as hurricanes
and flooding, to estimate the potential impacts and guide response and recovery measures.
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