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A B S T R A C T

Knowledge about the impact craters on rocky planets is crucial for understanding the evolutionary history of the 
universe. Compared to traditional visual interpretation, deep learning approaches have improved the efficiency 
of crater detection. However, single-source data and divergent data quality limit the accuracy of crater detection. 
In this study, we focus on valuable features in multi-modal remote sensing data from Chang’e lunar exploration 
mission and propose an Attention-based Dual-branch Segmentation Network (ADSNet). First, we use ADSNet to 
extract the multi-modal features via a dual-branch encoder. Second, we introduce a novel attention for data 
fusion where the features from the auxiliary modality are weighted by a scoring function and then being fused 
with those from the primary modality. After fusion, the features are transferred to the decoder through skip 
connection. Lastly, high-accuracy crater detection is achieved based on the learned multi-modal data features 
through semantic segmentation. Our results demonstrate that ADSNet outperforms other baseline models in 
many metrics such as IoU and F1 score. ADSNet is an effective approach to leverage multi-modal remote sensing 
data in geomorphological feature detection on rocky planets in general.

1. Introduction

Craters formed by small impactors are typical landforms on rocky 
planets. The geographic locations and occurrence frequency of these 
impact craters offer valuable insights into the geological era of a celestial 
body (Neukum et al., 2001), the development of geological formations, 
and the chronological order of geological processes (Fassett et al., 2012; 
Wu et al., 2018; 2019). Crater inventory can also help plan for the 
landing sites in future space exploration missions (Bernard and 
Golombek, 2001; Wu et al., 2020).

Efforts have been taken towards compiling a global catalog of lunar 
impact craters. A global inventory of lunar impact craters was presented 
by Head et al. (2010), encompassing data on 5,185 craters with di-
ameters of 20 km and larger. Other researchers (Barlow, 2017; Krüger 
et al., 2018; Salamunićcar et al., 2014) produced global catalogs 
including craters with diameters of 3 km and larger. Robbins (2019)
compiled a lunar impact crater catalog with diameters more than 1–2 
km. Wang and Wu (2020) initiated the development of a comprehensive 
catalog of lunar craters. Subsequently, Wang and Wu (2021) released a 

crater catalog, including 1,319,373 craters with diameters larger than 1 
km.

Currently, records and chronologies of impact craters play a crucial 
role in theories regarding the evolution of celestial bodies. Additionally, 
the distribution of craters in variant dimensions can be used to infer the 
size of impactors (Strom et al., 2005). For example, Minton et al. (2015)
contended, based on the distribution of craters, that the impactors 
comprise relatively fewer large-sized bodies compared to those found in 
the asteroid belt today.

In traditional approaches, craters are manually detected through the 
visual interpretation. However, inventories generated by this method 
are often limited to large impact craters or particular geographic areas 
(Bandeira et al., 2012). Additionally, visual interpretation may result in 
up to 40 % discrepancy among different human experts (Robbins et al., 
2014). Consequently, researchers have designed crater detection algo-
rithms based on feature extraction, machine learning, and neural net-
works to achieve the automation of crater classification. Emami et al. 
(2015) proposed a feature-based edge detection algorithm. Machine 
learning methods have been employed for crater detection by various 
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researchers. Salamunićcar and Lončarić (2010) utilized the Hough 
Transform to detect craters. Wetzler et al. (2005) applied SVM, and 
Stepinski et al. (2012) employed Decision Trees. Additionally, some 
researchers employed neural networks to achieve automation in crater 
detection (Cohen et al., 2016; Palafox et al., 2017). Di et al. (2014) also 
attempt multi-step approaches. They utilized an enhancement algorithm 
to enclose regions containing craters, followed by the Hough Transform 
for delineating their edges. Similarly, Boukercha et al. (2014) employed 
a method, where crater candidates provided by initial detection algo-
rithms were subsequently categorized as true positive or false positive 
using SVM or polynomial classifiers. Wang et al. (2022) further 
addressed the intricate challenges by proposing a method for detecting 
multi-scale lunar craters, accounting for diverse characteristics such as 
shape, lighting conditions, and size. In this method, they derived the 
feature in different light condition for detecting craters. Subsequently, 
they utilized the isolation forest algorithm to remove false craters. These 
models often rely on single data source, making them less effective when 
the dataset vary significantly in illumination across regions.

Researchers have started using multi-modal approaches to improve 
the performance. The primary remote sensing data used for planetary 
crater detection include Digital Elevation Models (DEM), near-infrared 
images, and Digital Orthophoto Maps (DOM). The data possess 
distinct characteristics: DOMs and infrared images are influenced by 
solar angles, resulting in oversaturation; DEMs are unaffected but lack 
spectral and physical information. If the unique features of different 
datasets are jointly utilized, it can achieve complementary information 
and lead to better performance. To leverage the complementary infor-
mation of optical images and DEMs, Mao et al. (2022) proposed a CNN 
with dual-path construction that consolidates features. Similarly, the 
ordinary convolutional blocks can be replaced with residual blocks in 
the encoder to extract DEM and optical image features separately (Wang 
et al., 2020; Lee et al., 2021). The DEM features extracted in the bridging 
network are integrated with the features of optical images. The decoder 
network incorporates attention to expand features, enhancing feature 
information. However, these methods do not assign different attention 
levels to different modalities, which may lead to incomplete usage of the 
effective features of each modality and unwarranted noise in acquiring 
multi-modal features. This will result in a slower convergence rate 
during model optimization and will also lead to local optima, thus 
influencing the enhancement of model accuracy.

We propose the Attention-based Dual-branch Segmentation Network 
(ADSNet), which leverages multi-modal data by obtaining the impor-
tance of different features through an attention and utilizes skip con-
nections to transfer the fused data features to the decoder. Finally, 
Concurrent Spatial and Channel ’Squeeze & Excitation’ (scSE) is 
employed in the decoder to enhance data features by fully utilizing the 
different modal features on impact craters. The main contributions of 
our work are as follows: 

(1) To the best of our knowledge, this is the first attempt to utilize the 
novel attention in the fusion step of multi-modal remote sensing 
data for impact crater detection. By allowing the model to assign 
varying degrees of attention to different data sources, this 
approach increases the available features and improves the ac-
curacy of impact crater detection.

(2) Our proposed model fully considers multi-modal features by 
integrating the features of impact craters from multi-modal 
remote sensing data using attention and transferring them to 
the decoder. Subsequently, scSE is employed to enhance the 
crucial parts of the features, followed by decoding based on the 
new features. In other words, we make full use of the features 
from different modalities, thereby enhancing the model’s gener-
alizability and accuracy in impact crater detection.

(3) Systematic experiments are conducted on impact crater detection 
to verify the performance of the ADSNet model. Our results 
disclose that multi-modal data feature fusion contributes to a 

higher accuracy of impact crater detection than single-modal 
scenario. Furthermore, the ADSNet is compared with the base-
line models, demonstrating its outstanding performance.

2. Related work

2.1. Semantic Segmentation-Based crater detection

The crater detection method based on semantic segmentation net-
works typically involves classifying each pixel in an image as either a 
crater or non-crater. Most semantic segmentation-based methods follow 
an encoder-bridge-decoder structure. The networks consist of multiple 
encoder and decoder blocks, respectively. They function as feature ex-
tractors through a series of encoder blocks ([E1，E2，E3，…，Ei， 
…，En]) and gain knowledge about the abstract patterns from input 
images. The encoder block Ei receives downsampling output from Ei− 1 as 
an input, and its output is transferred to both decoder Di and encoder 
Ei+1. Similarly, Di receives input from Ei concatenated with the upsam-
pling from Di+1. The encoder network increases the number of feature 
channels while reducing the spatial dimensions of features to capture 
high-dimensional semantic information. Some researchers have adopted 
the idea of residual connections introduced by He et al. (2016), pro-
posing residual convolution (Wang et al., 2020), residual blocks (Lee 
and Hogan, 2021), and a specialized residual block (Mao et al., 2022).

Ronneberger et al. (2015) proposed U-Net to segment biomedical 
images. U-Net has been widely used in various directions of semantic 
segmentation. Some researchers improved the U-Net model in terms of 
the filter quantity, kernel size, and depth, achieving advancements in 
impact crater detection (Silburt et al., 2019; Lee et al., 2019).

U-Net architecture exhibits inefficiency in multi-scale information 
fusion and fails to fully exploit high-resolution contextual information 
from multiple images. We still lack a learning mechanism to enhance 
features across various scales and to facilitate the transmission of fea-
tures in the network for detecting small and overlapping craters. 
Consequently, researchers have begun to explore the creation of various 
U-Net variants aimed at achieving more precise segmentation outcomes. 
He et al. (2016) introduced a residual module through shortcut con-
nections to streamline training and mitigate degradation issues in 
training deep networks. Wang et al. (2020) proposed an architecture 
called ERU-Net for crater detection, which replaces the convolutional 
blocks in U-Net with residual modules called “Residual Conv”. Similarly, 
Lee et al. (2021) utilized the ResU-Net architecture (Zhang et al., 2018), 
which also employs residual units from U-Net to enhance the learning 
capacity of the network.

In a typical architecture, skip connections link encoder blocks to 
decoder blocks, mitigating the loss of high-level features induced by 
downsampling. In the work by Jia et al. (2021), skip connections were 
substituted with nested dense connections to enhance the preservation 
of high-level features. They introduced NAU-Net, which combines U-Net 
and attention (Oktay et al., 2018) with nested dense connections. The 
attention helps enhance feature extraction capabilities for detecting 
overlapping craters. Chen et al. (2021) utilized the HRNet (Sun et al., 
2019) framework for crater detection on the lunar. HRNet preserves the 
high-resolution information and surpasses the constraints of the U-Net 
by learning comprehensive data representations through multi-scale 
fusion of input data. Juntao et al. (2024) proposed a knowledge-aware 
network for the detection of small-scale craters utilizing DEM. Howev-
er, these methods rarely consider attention in fusion, which fails to 
highlight the contributions of significant features within multimodal 
feature layers, and thus limits the improvements in detection accuracy.

2.2. Multi-modal remote sensing

Numerous classic shallow multi-modal models are utilized for 
feature extraction of multi-modal remote sensing observations. For 
example, Liao et al. (2014) proposed a model with graph-based subspace 
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learning to fuse hyperspectral and Light Detection and Ranging (LiDAR)- 
derived morphological profiles. Hong et al. (2020a,b) presented five 
different fusion strategies for spatial information modeling tasks and 
pixel classification tasks. Hu et al. (2021) collaboratively employed 23 
interdisciplinary datasets to characterize the structural, hydrological, 
and anthropogenic origins of surface deformation. Yokoya et al. (2018)
combined multiple features extracted from multispectral and Open-
StreetMap data and then inputted them into a classifier for local climate 
zone classification. Hu et al. (2019) proposed a mapper-based manifold 
alignment technique, achieving semi-supervised fusion of polarimetric 
SAR images and hyperspectral. Several subsequent studies (Gu et al., 
2015; Liu et al., 2019; Hong et al., 2020; Hu et al., 2021; Liu et al, 2022; 
Yu et al., 2024) were conducted to improve the capacity of information 
fusion between multiple modalities using more advanced methods.

Due to its ability to capture finer and richer scene features, deep 
learning techniques have made significant advancements in multi- 
modal feature extraction. Researchers have been exploring the possi-
bilities of developing multi-modal deep learning and its variants to 
effectively classify multi-modal remote sensing images. These models 
fall into two main directions. One category is the commonly used pixel- 
level multi-modal networks. Ghamisi et al. (2016) extracted extinction 
profiles from LiDAR data and hyperspectral. They fused them by CNNs 
in the deep feature space. Additionally, Xu et al. (2017) proposed the use 
of a CNN with cascading blocks for feature extraction and fusing multi- 
modality. Chen et al. (2017) proposed an end-to-end fusion network 
where feature was extracted by two CNNs and fused by a DNN. Benedetti 
et al. (2018) developed a DL-based generic framework to fuse multi- 
temporal and multi-modal satellite data. Another category is semantic 
segmentation, which involves assigning a semantic class to each pixel in 
an object-level manner. For example, Xu et al. (2019) achieved excellent 
semantic segmentation results through fusion fully convolutional net-
works on multispectral LiDAR data and hyperspectral data.

3. Data and method

Utilizing a complementary strategy between two types of images, we 
explore a dual-branch convolutional neural network framework based 
on encoder-bridge-decoder architecture for crater detection, termed as 
the ADSNet. Generally, the encoder-bridge-decoder structure excels at 
handling images with simple semantic structures, and lunar images 

possess intuitive semantics and representative structures. Therefore, we 
employ an encoder-bridge-decoder structure to construct a dual-branch 
CNN framework (Fig. 1). It consists of dual-branch encoding, bridging 
layer, and decoding. The dual-branch encoding extracts features from 
DEM and DOM data, and these features are fused with an attention. The 
bridge layer uses the skip-connection to pass fusion features from the 
encoders to the decoders. The decoding process combines the output 
from the previous decoder with the fusion result from the bridging layer, 
serving as the input for the current decoder. This approach utilizes 
successive convolutions of the feature map to effectively recover the 
image information.

3.1. Data

We utilize two modal images of lunar (DOM and DEM), both ob-
tained from the CCD stereo camera carried by the Chang’e-2 mission. 
Fig. 2 showcases these two types of images. The Chang’e lunar explo-
ration missions are lunar exploration projects initiated by the China 
National Space Administration (CNSA) in 2007. The objective of these 
missions is to achieve lunar exploration, sample return, and to explore 
scientific questions such as lunar surface geology and resource distri-
bution. Chang’e 2 is extremely successful in China’s lunar orbit explo-
ration. Its scientific tasks, including high-resolution lunar image capture 
and lunar surface elevation mapping conducted in lunar orbit, provide 
crucial data for the advancement of lunar exploration missions. The 
DEM images used in the experiments have a resolution of 20 m/pixel in 
dimensions of 935 × 931 pixels. The DOM images have a resolution of 7 
m/pixel in dimensions of 2,669 × 2,657 pixels. The DEM images were 
aligned to the DOM image, covering an area of approximately 18 × 18 
km on the lunar surface. Most of the current lunar crater catalogs are at 
the kilometer scale, we aim to detect more and smaller craters (>50 m in 
diameter) that the DEM image cannot achieve alone. To better utilize the 
features of the DEM image in the model, we compute the slope of the 
DEM and used it as the input.

We crop the data into multiple patches, specifying the size of the 
dual-branch input images as 256 × 256 pixels. We focus on identifying 
craters in the images with a diameter greater than 7 pixels, allowing us 
to extract craters with a minimum diameter of 50 m. After data pro-
cessing, we obtain 2,550 training samples, 500 validation samples, and 
500 test samples. Each sample consists of a pair of DOM and DEM images 

Fig. 1. The schematic diagram of the ADSNet.
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of craters. Furthermore, we utilize existing crater catalog (Wang et al., 
2021) to create semantic segmentation labels.

3.2. Dual-branch encoding

The encoding consists of two independent input branches (one main 
branch and one auxiliary branch) to address DOM and DEM images 
(Fig. 1). Each branch in the dual encoding comprises 5 encoder units and 
every unit consists of residual unit and max-pooling layers. Fig. 3 il-
lustrates the structure of the residual unit, which consists of 2 con-
volutional layers, 2 batch normalization, and a rectified linear unit. The 
feature fusion of the two contracting paths is achieved using attention. It 
integrates the features of the main path and the features calculated 
through attention in the auxiliary path into the final features. Mean-
while, the features of the main branch are preserved.

3.2.1. Residual unit
We introduce residual units instead of regular units to further 

enhance the model performance. Deeper networks often degrade due to 
the vanishing gradient. To solve this problem, He et al. (2016) intro-
duced residual neural networks. Fig. 3 illustrates the structure of the 
residual units. The residual unit consists of a combination of BN, ReLU 
activation, and convolutional layers. Based on this, we construct the 
encoding part of the ADSNet model, leading to two benefits: (1) 
Simplified training process due to the presence of residual units; (2) 
Facilitated information propagation without degradation between re-
sidual units and higher-level networks through skip connections. 
Consequently, a neural network with fewer parameters is designed with 

a better performance in semantic segmentation.

3.2.2. Fusion based on attention
In this paper, the data used for crater detection consist of DOM and 

DEM. We aim to fully leverage the diverse data features instead of 
directly concatenating them as previous studies. Therefore, we employ 
the scaled dot-product attention for computing scores. To meet the re-
quirements of attention computation, the features obtained from the 
convolutional layers, namely the DOM and DEM feature matrices, must 
first be reshaped into patches. Next, these reshaped features are pro-
jected into a lower-dimensional embedding space through a linear 
transformation for fusion. Finally, after completing the fusion, the 
feature maps need to be reshaped back into their original matrix form to 
facilitate the decoder in recovering the image features. Specifically, we 
use the following dot product equation to compute the attention scores: 

W = softmax

(
Wq⋅FO⋅(Wk⋅FE)

T

dk

)

(1) 

where Wq and Wk are the weight matrices used for the linear trans-
formation, FO and are FE are the patches reshaped from the DOM and 
DEM feature matrices, respectively, dk is the dimensionality of the 
embedding, and W represents the computed weight matrix. For our 
dataset, the resolution of the DOM data (7 m) is better than that of the 
DEM data (20 m). Therefore, we choose DOM as the primary modality to 
preserve the features while extracting effective features from the DEM 
through attention and reduced the influence of noise therein. The 
workflow of the attention in ADSNet is shown in Fig. 4. Thus, the for-
mula for computing the final fused features is given by, 

Fig. 2. (a) DOM, (b) DEM, and (c) the DEM-derived slope. Purple circles delineate craters from inventory generated by Wang and Wu (2021). Yellow polygons are 
labels used in this study.

Fig. 3. The structure of residual unit. Fig. 4. The workflow of the attention in ADSNet.
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Feature = F1 + WF2 (2) 

where F1 is the feature matrix of the DOM, F2 is the feature matrix of the 
DEM, and Feature is the feature matrix obtained after fusing.

3.3. Bridging layer

The bridging layer connects the encoding and decoding parts to 
facilitate information propagation. We perform concatenation opera-
tions for each layer of encoding and fuse the feature maps of the two 
residual convolution blocks involved in the dual branch (Fig. 1).

In the bridging pathway, we use 1 × 1 convolutional layers to 
mitigate aliasing effects during upsampling. As a result of the down-
sampling through pooling in encoding, semantic information is dimin-
ished in the low-level features, thereby achieving precise target 
localization. Conversely, high-level feature maps have stronger semantic 
information but coarse target localization. Therefore, the integrity of 
both positional and semantic information can be enhanced by con-
necting each layer of encoding through convolution.

3.4. Decoding

We restore the image to obtain precise segmentation of craters using 
decoding. The decoding consists of 4 decoder blocks, each containing 
two 3 × 3 convolutional layers and an scSE module (Fig. 5). Finally, we 
use a convolution to reduce the number of features to one. Subsequently, 
the sigmoid function is applied to obtain the output to be either 0 or 1.

In the decoding, we introduce “Feature recalibration module with 
spatial and channel ’squeeze & excitation’ block” (scSE) to further 
optimize the feature space. Human visual attention involves focus on the 
areas of interest. Similarly, attention operations in deep learning enable 
the selection of critical information from vast feature spaces, thereby 
enhancing recognition performance. Specifically, the scSE module (Roy 
et al, 2018) consists of Spatial Squeeze & Excitation (sSE) and Channel 
Squeeze & Excitation (cSE) modules. The sSE module applies the 
attention weights to the spatial dimension of the input feature to high-
light important spatial locations. Conversely, the cSE module applies the 
attention weighting to the channel dimension of the feature to capture 
correlations in channel-level. The combination of these two modules 
allows for a more effective utilization of the different information in 
input features, thereby improving the model performance.

4. Experiments

To objectively measure the performance of the model, we evaluate 
the model using multiple metrics. First, we validate the effectiveness of 
multi-modal image inputs and the impact of integrating the scSE module 
in the decoding phase. Second, we compare the performance of the 
ADSNet with several other models to assess its improvement. We pro-
vide detailed experimental setup in Section 4.1. Then, we compare the 
performance of the ADSNet and other baseline models in Section 4.2. 
Finally, in Section 4.3, we discuss the ablation experiments conducted 
on the ADSNet.

4.1. Experimental setup

4.1.1. Evaluation protocol
In the field of semantic segmentation, there are several commonly 

used evaluation metrics for assessing the model performance. For the 
task at hand, where pixels need to be classified into two categories (i.e., 
impact craters and non-impact craters), these metrics facilitate effective 
semantic segmentation and crater identification. Subsequently, model 
predictions are quantitatively compared with ground truth labels to 
evaluate model performance.

We choose four main evaluation metrics are often utilized in se-
mantic segmentation tasks. Mean Intersection over Union (mIoU) assesses 
the degree of overlap between model predictions and the corresponding 
ground truth labels. Pixel Accuracy (PA) gauges the accuracy of pixel 
classification by determining the ratio of correctly classified pixels to the 
total number of pixels. Mean Pixel Accuracy (mPA) averages the pixel 
accuracy for each class, addressing the sensitivity of pixel accuracy to 
class imbalance. F1 Score is a comprehensive metric that considers both 
Precision and Recall, and it can also be regarded as a variant of IoU.

While the aforementioned evaluation metrics provide objective as-
sessments of semantic segmentation models, for the specific task of 
crater detection, the prevalence of non-crater pixels in the image may 
lead to inflated evaluation metrics for the non-impact crater class. 
Consequently, the overall metrics such as mIoU, mDice, and mPA will be 
biased. To provide a more objective evaluation of our model’s perfor-
mance in impact crater detection, our experiments not only consider the 
overall metrics but also include metrics for the crater class such as IoU, 
F1 Score, and cPA (Class Pixel Accuracy).

4.1.2. Baselines
We establish two baselines to validate the effectiveness of the ADS-

Net. The first baseline consists of other semantic segmentation models: 
(1) DeeplabV3+ (Chen et al., 2018), (2) DMNet (He et al., 2019), (3) 
DANet (Fu et al., 2019), (4) Semantic FPN (Kirillov et al., 2019), and (5) 
SAN (Xu et al., 2023).

The second baseline involves ablation experiments. In the encoding 
phase, we employ a dual-branch strategy to encode both inputs simul-
taneously and utilize the scaled dot-product attention for fusion. In the 
decoding phase, we introduce the scSE module to enhance image fea-
tures of critical areas of interest. Here our ablation experiments include 
three scenarios: (1) Exclude the dual-branch strategy and only input the 
7-m-resolution DOM image; (2) Adopt the dual-branch strategy in 
traditional fusion methods without the scaled dot-product attention; (3) 
Employ the dual-branch strategy and the scaled dot-product attention 
for fusion, but omit the scSE module in decoding, where each encoding 
block only contains the convolutional layers.

4.1.3. Experiment settings
We set some parameters as constants throughout the entire experi-

ment (e.g., number of epochs = 100, image size = 512, learning rate =
0.0001, patience = 5, and class weights = 1.0). Here, patience = 5 
means that in the validation set, the model’s effectiveness does not 
improve continuously by 5 times.

In the field of semantic segmentation, researchers often use Cross- 
Entropy Loss as a loss function. However, as discussed in Section 4.1.1, in 
the task of impact crater detection, there is a significant imbalance be-
tween impact craters and non-impact crater pixels, which challenges the 
model training and degrades the model performance. We opt to use the 
Focal Loss (Eq (3)), which addresses the issue of class imbalance problem 
by balancing the weights of easy and hard to classify samples. 

FocalLoss = − (1 − pt)
γ log(pt) (3) 

where pt represents the probability of predicting a certain sample as a 
positive sample, γ is a hyperparameter for tuning, a higher γ reduces the 
contribution of losses from easy samples, (1 − pt)

γ is used to adjust the 
Fig. 5. The structure of scSE.
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weights of easy and hard samples. When an impact crater is mis-
classified, pt is small, (1 − pt)

γ approaches 1, and its loss is hardly 
affected. Conversely, when pt approaches 1 (suggesting good classifi-
cation prediction for simple samples), (1 − pt)

γ approaches 0, and its loss 
is reduced. After multiple validations, we choose γ = 1 as the 
hyperparameter.

4.2. Comparisons with other models

We compare ADSNet with other models in the field of semantic 
segmentation (Fig. 6). The results show that ADSNet outperforms most 
other models on many metrics (Table 1).

First, as a multi-modal model, ADSNet benefits from richer input 
features compared to the single-modal models and effectively leverages 
the multi-modal features via the scaled dot-product attention. Second, 
the residual units in ADSNet address the issue of vanishing and ex-
ploding gradients, thereby enhancing the model’s performance. Lastly, 
the integration of scSE in the decoder part of ADSNet further enhances 
image features, resulting in superior accuracy. These reasons give 
ADSNet better performance.

Additionally, we note that in certain metrics, the performance of 
ADSNet is inferior to the comparison models. For example, Semantic 
FPN performs the best in terms of mIoU, and DANet performs the best in 
terms of Recall. However, it is evident that any individual metric can 
hardly fully characterize the performance of impact crater detection. In 
our analysis of the performance of ADSNet and DANet in a selected area, 
we note that misalignments at the edges of larger impact craters 
significantly affect detection accuracy more than the omission of smaller 
craters. It is evident that DANet fails to identify a number of small 
impact craters (Fig. 7). Nevertheless, DANet’s delineation of large 
impact craters in this area aligns more closely with the actual data, 
resulting in similar overall metrics for both models.

4.3. Ablation experiment

Here we discuss the impact of various remote sensing images on our 
model. We note that the inputs of multiple remote sensing images and 
the fusion methods of image features both affect the model’s perfor-
mance. We also discuss the effects of residual units and scSE.

The ADSNet utilizes the scaled dot-product attention to fuse multi- 
modal data. Based on the results in Table 2, we affirm that the design 
of ADSNet is rational and effective. Specifically, we can draw the 
following four conclusions: 

(I) When the residual units are not introduced, the model perfor-
mance greatly declines due to vanishing gradient.

(II) When ADSNet uses single-modal inputs, there is a significant 
decrease in all performance metrics. This is attributed to the 
limited feature information compared to multi-modal inputs.

(III) When ADSNet relies on traditional fusion methods without the 
attention to fuse multi-modal features, its performance is notably 
better than that of the single-modal input ADSNet. However, it 
cannot focus on the area of interest. This is due to the presence of 
noise and irrelevant features in the directly fused information.

(IV) When ADSNet does not incorporate the scSE module, its perfor-
mance slightly deteriorates compared to the original model. This 
is because the absence of spatial and channel attention affects the 
decoding results.

We also note that metrics such as mIoU, mdice, PA, and mPA show 
minimal variations across different experiments. This is because the 
inclusion of both crater and non-crater pixel results in these metrics. The 
dominance of non-crater pixels in the image leads to an overestimation 
of non-crater class metrics, resulting in relatively consistent metric 
changes across experiments. The effectiveness of ADSNet is undeniable, 
demonstrating that the fusion of multi-modal information provides 
richer information for crater detection. The use of attention enables the 
model to precisely detect craters.

Fig. 8 demonstrates the feature maps in ADSNet, visually explaining 
its decision-making process in completing the crater detection task. To 
determine the importance of different features, the scaled dot-product 
attention computes the attention scores. In the context of ADSNet, 
these features are derived from both DOM and DEM inputs. The atten-
tion assigns weights to these features based on their relevance to the task 
of crater detection. Higher weights indicate greater importance, allow-
ing the model to focus on the most informative aspects of the data. The 
attention selectively highlights relevant features, guiding the network to 
focus on areas that are most likely to contain craters. This selective 
attention is crucial for distinguishing between craters and other similar 
surface features.

Early layers of the decoding, influenced by the attention scores, 
capture surface patterns and elevation changes. As the decoding pro-
ceeds, subsequent layers refine these maps by incorporating more 
detailed features, such as the precise contours of craters. The attention 
ensures that these detailed features are accurately integrated from both 
DOM and DEM data, leading to more precise crater detection.

4.4. Crater detection results

We compare the detection results of the model with the existing 
catalog of lunar impact craters. The existing catalog contains 7 impact 
craters with diameters on the order of kilometers in our study area, 
while ADSNet identifies 1537 impact craters with diameters greater 
than 50 m, two orders of magnitude smaller than the previous attempts. 

Fig. 6. Results of ADSNet and baseline models.
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ADSNet evidently complement our knowledge about craters in small 
dimensions.

5. Conclusion

To address the issue of previous automatic crater detection methods 
that overlooked multi-model data including surface elevation and op-
tical textures, this study proposes the ADSNet method to utilize multi- 
modal remote sensing images and to integrate impact crater contex-
tual information from different modalities. The incorporation of encoder 
residual units and decoder scSE enhances the convergence speed and 
accuracy of the model. By introducing attention to fuse multi-modal 
features, ADSNet extracts important features and reduces noise. By 
conducting experiments systematically, we demonstrate the significance 
of multi-modal features and attention for improving the accuracy of 
crater detection. In the future, we will complement multi-scale lunar 
craters through data resampling and conduct a comprehensive catalog of 
the entire lunar craters. Additionally, we will explore other optimization 
mechanisms and incorporate small craters to improve lunar chronology 

theory. Overall, our study provides a promising tool for geomorpho-
logical feature detection on rocky planets in general.
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