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 ABSTRACT  

  Current global multi-source merged precipitation datasets can facilitate better utilization  

of the complementary nature of gauge-, satellite-, and reanalysis-based precipitation estimates,  

particularly for capturing precipitation variability. However, merging these datasets at high  

resolutions of 1-hourly and 0.1° on a full global scale remains a substantial challenge for the  

scientific community owing to high spatiotemporal heterogeneities. This study proposed a  

merging-and-calibration framework to optimally integrate the advantages of gauge-, satellite-,  

and model-based precipitation estimates, focusing on precipitation occurrences and providing  

a new fully Global multi-source Merging-and-Calibration Precipitation dataset (GMCP: 1- 

hourly, 0.1°, global, 2000–Present). The main conclusions included: (1) GMCP generally  

outperformed the input datasets, ERA5-Land, GSMaP-MVK, and IMERG-Late, across various  

spatiotemporal scales, both in regional statistics and extreme precipitation systems; (2) GMCP  

significantly outperformed IMERG-Final, calibrated by gauge analysis at the monthly scale,  

with the improvements in correlation coefficient (CC), root mean square error (RMSE), and  

Heidke skill score (HSS) by approximately 66.67%, 39.25%, and 26.83%, respectively, from  

2016 to 2020 over the Continental United States (CONUS); (3) compared to the state-of-the- 

art multi-source merged product with a daily gauge correction scheme, MSWEP V2 (3-hourly  

and 0.1°), GMCP demonstrated the notable improvements with an approximately 20%  

enhancement in accurately capturing the precipitation occurrences against approximately 67,  

000 rain gauges over Mainland China in 2016; (4) in comparison to another well-known multi- 

source merged quasi-global daily and 0.05° precipitation product, CHIPRS integrating the  

gauge-, satellite-, and reanalysis-based precipitation estimates, GMCP also demonstrated the  

notable improvements at the daily scale, achieving the increases in CC, RMSE, and HSS by  

around 57.45%, 38.18%, and 75.76%, respectively, against approximately 67, 000 rain gauges  

over Mainland China in 2016; and (5) this framework was suitable for generating the fully  

global precipitation datasets at 1-hourly and 0.1° scales, significantly mitigating the inherent  

shortcomings of each input dataset, with GMCP demonstrating the great potential as a valuable  

resource for worldwide scientific research and societal applications.   

Keywords: Precipitation; Merging; Calibration; Multiplicative Triple Collocation; Global  

dataset   
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SIGNIFICANCE STATEMENT  

Highly accurate global gridded precipitation datasets for precipitation occurrences and  

volumes are essential for understanding the water, energy, and carbon cycles on Earth in the  

context of a changing climate. This study aimed to introduce a new fully global multi-source  

merged precipitation dataset with high quality and resolutions of 1-hourly and 0.1° from 2000  

to the present. This dataset integrated the advantages of ground gauge-, satellite-, and model- 

based precipitation estimates, particularly regarding precipitation occurrence, which can  

benefit scientific research communities and societal applications worldwide, including  

hydrological, climatological, meteorological, and water resource management.  
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CAPSULE  
GMCP: A long-term fully global precipitation dataset (1-hourly, 0.1°, global, 2000–present)  

was developed by comprehensively considering both precipitation occurrences and volumes in  

multi-source merging and calibration processes.  
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1. Introduction  

Precipitation is one of the most challenging meteorological variables owing to its high  

spatiotemporal heterogeneity (Hou et al., 2014; Huffman et al., 2019; Levizzani et al., 2020;  

Xu et al., 2023; Yan et al., 2023; Ji et al., 2024). Under climate warming scenarios, precipitation  

variability is expected to increase significantly, as indicated by the Clausius-Clapeyron relation,  

which suggests that the near-surface atmospheric moisture-holding capacity increases by  

approximately 7% per Kelvin, resulting in greater fluctuations in precipitation occurrences and  

wider swings between wet and dry episodes (Douville et al., 2021). For instance, recent  

investigations have revealed that accumulated anthropogenic warming has led to a global  

increase in daily precipitation variability of 1.2% per decade over 75% of land areas over the  

past century, posing new challenges for weather prediction and societal resilience (Zhang et al.,  

2024). Additionally, global warming is projected to cause robust increases in precipitation  

variability across various spatiotemporal scales, particularly at the synoptic scale (Zhang et al.,  

2021; Jiang et al., 2023). Therefore, it is essential to accurately monitor global precipitation  

occurrences and volumes at a high spatiotemporal resolution. Currently, there are three  

principal sources of precipitation information: ground gauge- and radar-based observations,  

satellite remote sensing, and atmospheric retrospective analysis models. However,  

precipitation data from these different sources possess their own advantages and disadvantages  

(Beck et al., 2017, 2019; Ma et al., 2020, 2022; for details of the mainstream datasets, see Table  

1).  

Ground rain gauges, weather radars, and ocean buoys provide accurate precipitation  

information at point or regional scales but lack global coverage. The accuracy of interpolation- 

based gauge analysis is highly dependent on the density of the gauge network and the degree  

of spatial coherence, both of which exhibit significant global variability (e.g., CPC-Gauge, 0.5°,  

daily, Xie et al., 2007; APHRODITE, 0.25°, daily, Yatagai et al., 2012, 2019; GPCC, 1.0°,  

daily, Adler et al., 2018). In contrast, satellites can observe large areas instantaneously at high  

resolutions, leading to the continuous launch of two international constellation-based satellite  

missions: the Tropical Rainfall Measuring Mission (TRMM) in 1997 and the Global  

Precipitation Measurement (GPM) mission in 2014 (Kummerow et al., 1998; Kidd and  

Levizzani, 2011; Hou et al., 2014). Satellite precipitation products can be categorized into two  

types: infrared (IR)-based precipitation estimates that utilize infrared observations from  

geostationary satellites at high resolutions of approximately 0.04° and half-hourly intervals  
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(e.g., PERSIANN-CCS, 0.04°, half-hourly, Hong et al., 2004; PERSIANN-CDR-CCS, 0.04°,  

3-hourly, Sadeghi et al., 2021; FY4AQPE-MSA, 0.04°, ~15 min, Ma et al., 2022; PECA-FY4A,   

0.04°, ~15 min, Zhu and Ma, 2022) and microwave (MW)-based precipitation products that  

adopt microwave observations (e.g., CMORPH, 0.04°, half-hourly, Joyce et al., 2004; GSMaP- 

MVK, 0.1°, 1-hourly, Mega et al., 2019; IMERG-Late, 0.1°, half-hourly, Kummerow et al.,  

2015). Satellite-based precipitation estimates, particularly those using MW technology, capture  

precipitation patterns in the tropics, oceans, and low-altitude regions during wet seasons, such  

as summer, spring, and autumn. However, they are prone to systematic biases, are relatively  

insensitive to snowfall and light rainfall events, and tend to underperform over snow- and ice- 

covered surfaces, as well as in high-altitude and high-latitude regions, particularly during  

winter (Tang et al., 2020; Xu et al., 2022; Yan et al., 2023; Ji et al., 2024). For instance, IMERG  

performs significantly better in summer when temperatures are higher and precipitation is more  

abundant but struggles to detect the precipitation occurrences in winter. Although infrared (IR)- 

based precipitation estimates are primarily limited to exploring cloud top information and  

surface precipitation can generally perform worse than MW-based estimates, they (e.g., PCDR  

and CHIRPS) are more effective at detecting precipitation occurrences during winter owing to  

the advantages of infrared data in cold conditions (Tang et al., 2020; Ji et al., 2024).  

Additionally, MW-based estimates, including IMERG-Late Version 06, demonstrate  

reasonable performance on an hourly scale and effectively reproduce diurnal cycles, even in  

arid regions, by capturing peak times, magnitudes, and variations (Xu et al., 2022). Overall,  

there remains significant room for improvement in satellite-based estimates of snowfall during  

winter and in cold climates (Meng et al., 2017; Tang et al., 2020; Xu et al., 2022; Ji et al., 2024).  

Atmospheric reanalysis models are crucial sources for generating full global precipitation  

estimates, including ERA5 (0.25°, hourly; Hersbach et al., 2020), ERA5-Land (0.1°, hourly;  

Muñoz-Sabater, 2019), MERRA-2 (0.5°, hourly; Gelaro et al. 2017), JRA-55 (0.5°, 3-hourly;  

Kobayashi et al. 2015), which are well-suited for simulating the evolution of large-scale  

weather systems. However, they poorly represent the variability associated with convection  

owing to their relatively low resolutions and deficiencies in the parameterizations of sub-grid  

processes (Muñoz-Sabater, 2019). Satellite precipitation estimates are relatively ineffective  

over snow- and ice-covered surfaces and struggle to detect snowfall under various conditions.  

Moreover, reanalysis models possess inherent advantages in estimating precipitation during  

cold seasons and in high-altitude and high-latitude regions, particularly for snowfall estimation,  
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which outperform rainfall estimation because most snow originates from non-convective large- 

scale synoptic weather systems (Hersbach et al., 2020; Muñoz-Sabater, 2019; Gelaro et al.,  

2017; Kobayashi et al., 2015; Tang et al., 2020). The reanalysis products can effectively capture  

precipitation during summer because they are better at estimating stratiform precipitation than  

convective precipitation, as demonstrated in northeastern China (Xu et al., 2022). However,  

reanalysis tends to consistently overestimate the precipitation frequency while underestimating  

the global intensity owing to deficiencies in the parameterization of the physical processes  

controlling precipitation generation (Trenberth and Zhang 2018; Ma et al., 2022). Furthermore,  

although reanalysis is acceptable on a daily scale, its performance degrades on an hourly scale  

owing to limitations in reproducing the peak time, magnitude, and variation of diurnal cycles,  

as observed with ERA5 (Tang et al., 2020; Xu et al., 2022).   

Although ground gauges are available only regionally, they are widely considered to be  

the most reliable means of estimating precipitation and are often used to calibrate satellite-only  

or reanalysis-only precipitation estimates, mitigating systematic biases and random errors  

(Huffman et al., 2007; Ma et al., 2020, 2022). Multi-satellite-only precipitation estimates, such  

as IMERG-Late, (Huffman et al., 2019) are inherently affected by regional, seasonal, and  

diurnal systematic biases and random errors (Ebert et al., 2007). To calibrate the multi-satellite- 

only IMERG-Late, the GPCP SG (2.5°, monthly) was initially created by combining multi- 

satellite-only estimates, primarily based on MW and IR observations, with gauge analysis using  

an inverse-error-variance weighting strategy (Huffman et al., 1997; Adler et al., 2003, 2018).  

Subsequently, the volumes of the half-hourly IMERG-Late were calibrated by applying the  

ratios between the accumulated monthly IMERG-Late and GPCP SG at the corresponding  

spatiotemporal locations, resulting in the final calibrated estimates, IMERG-Final, which  

demonstrated superior performance at monthly and annual scales compared to the hourly and  

daily scales (Lu et al., 2020; Xu et al., 2019, 2022). Similarly, global atmospheric reanalysis  

data, such as ERA5 (0.25°) and ERA5-Land (0.1°), exhibit notable non-zero and often  

substantial random errors and biases (Hersbach et al., 2020; Xu et al., 2022; Ma et al., 2022).  

In response, Ma et al. (2020) developed a Daily Spatio-Temporal Disaggregation Algorithm  

(DSTDCA) to calibrate the IMERG-Final on a 0.25° daily scale using gauge analysis,  

APHRODITE (Yatagai et al., 2012), resulting in the generation of the Asian precipitation  

dataset AIMERG (0.1°, half-hourly, 2000–2015, Monson Asia). They demonstrated a  

significantly improved quality compared to IMERG-Final. Additionally, Ma et al. (2022)  
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proposed the Daily Total Volume Controlled Merging and Disaggregation Algorithm  

(DTVCMDA), an updated daily calibration method that anchored ERA5-Land under total  

volume control by APHRODITE at a 0.25° daily scale and developed a long-term precipitation  

dataset (AERA5-Asia: 1-hourly, 0.1°,1951–2015, Monson Asia). This dataset significantly  

outperformed both ERA5-Land and IMERG-Final against ground observations in Mainland  

China. Although AIMERG and AERA5-Asia benefit from APHRODITE’s Asian gauge  

analysis, which improves the hourly precipitation accuracy, their limited spatial coverage  

restricts their global applicability. Thus, there is a crucial need to develop fully global multi- 

source ensemble precipitation estimates as the “bench mark” with fine quality and resolution  

on a daily scale to calibrate hourly satellite-only or model-only precipitation estimates within  

a merging-and-calibration framework.   

Multi-source precipitation dataset merging algorithms aim to integrate the strengths of  

various data sources, with gauge-based estimates contributing primarily to terrestrial surfaces,  

satellite data dominating at low- and mid-latitudes, and reanalysis data playing a key role at  

high latitudes (Beck et al., 2017, 2019). Over the past two decades, numerous merging  

algorithms have been developed, mainly using statistical and machine learning methods.  

Common statistical approaches include simple model averaging (SMA) (Shen et al., 2014), one  

outlier removed (OOA) (Shen et al., 2014), dynamic Bayesian model averaging (DBMA) (Ma  

et al., 2018; Yumnam et al., 2022), triple collocation (TC) (Lyv et al., 2020), multi-source  

weighted ensemble precipitation (MSWEP) (Beck et al., 2017, 2019), and morphology-based  

adaptive spatiotemporal merging algorithm (MASTMA) (Zhu et al., 2022). Compared with  

statistical methods, machine learning techniques offer greater potential for solving a wide range  

of problems, including classification, regression, and prediction (Lei et al., 2022). Various ML  

algorithms have been extensively applied in precipitation calibration and merging, including  

random forest (RF) (Baez-Villanueva et al., 2020), quantile regression forest (QRF) (Bhuiyan  

et al., 2018), gradient boosting decision tree (GBDT) (Lei et al., 2022) and extreme gradient  

boosting (XGBoost) (Lei et al., 2022), support vector machine (SVR) (Kumar et al., 2019),  

convolutional neural networks (CNN) (Le et al., 2020), deep neural networks (DNN) (Tao et  

al., 2016), artificial neural networks (ANN) (Wehbe et al., 2020), long short-term memory  

networks (LSTM) (Tang et al., 2021), and multiple deep learning-coupled models (Wu et  

al.,2020; Gavahi et al., 2023). For instance, Lei et al. (2022) explored the application of GBDT,  

XGBoost, and RF to merge six satellite- and reanalysis-based precipitation datasets for building  
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classification and regression models, incorporating environmental variables, such as DEM,  

longitude, latitude, wind speed, relative humidity, soil moisture, cloud cover, air temperature,  

and spatial autocorrelation, which significantly improved the estimation of precipitation  

occurrences and intensity. XGBoost presented high computational efficiency for large-scale  

datasets. Similarly, Gavahi et al. (2023) proposed a deep learning-based architecture combining  

3D-CNN and ConvLSTM layers to capture spatial and temporal precipitation patterns using  

rain gauge observations as target values. The limitations of such algorithms are mainly: (1)  

their reliance on the density of gauge networks, which is particularly problematic in regions  

with cold climates, complex topography, snow, and glacier cover, where gauges are sparsely  

distributed and spatial heterogeneity is high; and (2) their applicability is largely confined to  

coarser spatiotemporal resolutions (e.g., monthly, daily, and 0.25°) and broader continental,  

national, or regional scales, failing to meet the demand for fully global precipitation datasets at  

high resolutions, such as hourly and 0.1°. Additionally, current regional, quasi-global, and fully  

global multi-source merged precipitation datasets focused mainly on the precipitation volumes,  

with insufficient attention given to precipitation occurrences (Beck et al., 2017, 2019; Ma et  

al., 2020, 2022), which presents challenges in capturing precipitation variability under a  

changing climate (Douville et al.,2021; Zhang et al., 2021; Jiang et al., 2023; Zhang et al.,  

2024).  

Two scientific challenges should be addressed to generate a fully global, high-quality  

precipitation dataset at an hourly scale: (1) how to merge gauge-, satellite- and reanalysis- 

based precipitation datasets at daily and global scales, despite the severely uneven distribution  

of gauges, and (2) how to optimally estimate precipitation occurrences and volumes at an  

hourly scale without uniform global gauge data, as downscaling daily precipitation estimates  

to hourly data is difficult because of limited covariates and the complexity of their  

relationships (Ma et al., 2017, 2019, 2020). This study proposed a novel and flexible merging- 

and-calibration framework to address the concerns mentioned. First, it merged the gauge-,  

satellite-, and reanalysis-based precipitation datasets at daily and global scales, guided by  

point-based gauge information, and applied morphology and optimal theory (Zhu et al., 2022).  

Second, it combined satellite- and reanalysis-based estimates at an hourly scale using the  

updated triple collocation theory, focusing on precipitation occurrences without hourly gauge  

information guidance (Lyv et al., 2021; Ji et al., 2024). Finally, the hourly merged results  
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were calibrated using the daily merged data, as a global benchmark, following the calibration  

strategies of Ma et al. (2020, 2022).   

The main objectives of this study were to (1) evaluating the reasonability and  

applicability of the proposed merging-and-calibration framework for multi-source  

precipitation merging at fully global 1-hourly and 0.1° scales, (2) provide a fully Global multi- 

source Merging-and-Calibration Precipitation dataset (GMCP: 1-hourly, 0.1°, 2000–Present)  

for scientific research and societal applications during the TRMM–GPM era, and (3) compare  

the performance of GMCP with contemporary state-of-the-art multi-source merged  

precipitation datasets at various spatiotemporal scales. Additionally, this study was conduct  

to offer references and possible merging-and-calibration schemes for future global ensemble  

precipitation products for operational purposes, based on various sources and algorithms at  

regional, quasi-global, and fully global scales. 
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2. Data  
Under the guidance that gauge-based precipitation estimates provide the primary  

contribution over terrestrial surfaces for all periods, with satellite data dominating at low- and  

mid- latitudes and reanalysis data at high latitudes (Beck et al., 2017, 2019), six precipitation  

datasets have been carefully utilized in the merging-calibration framework: GSOD, CPC- 

Gauge, GSMaP-MVK, IMERG-Late, ERA5, and ERA5-Land. CPC-Gauge is recognized as  

the most representative gauge analysis, offering the highest quality, resolution, and worldwide  

land coverage (Xie et al., 2007; Adler et al., 2018). For satellite-based estimates, IMERG-Late  

and GSMaP-MVK, were selected because of their performance compared to other  

contemporary satellite-based estimates, particularly IR-based estimates, such as PERSIANN- 

CCS, which utilizes IR information in their retrieval algorithms and data generation processes  

(Joyce et al., 2004; Kummerow et al., 2015; Mega et al., 2019; Tang et al., 2020; Xu et al.,  

2022). ERA5 over oceans and ERA5-Land over land were selected as the reanalysis estimates,  

as they demonstrated significant improvements over their predecessors, ERA-Interim, in both  

quality and resolution, and outperformed other reanalysis precipitation estimates, such as  

MERRA-2 and JRA-55 (Hersbach et al., 2020; Muñoz-Sabater., 2019; Gelaro et al., 2017;  

Kobayashi et al., 2015; Tang et al., 2020; Xu et al., 2022; Ji et al., 2024). Daily point-based  

GSOD data were applied to train the parameters for merging gauge-, satellite-, and reanalysis- 

based estimates on a daily scale (Menne et al., 2012; Zhu et al., 2022). Moreover,  

APHRODITE-Japan (Yatagai et al., 2012, 2019), CHIRPS (Funk et al., 2015), Stage IV, and  

ground point-based gauge precipitation data were selected for independent validation and  

comparison purposes. Detailed information regarding the selected precipitation datasets is as  

follows.  

2.1 CPC-Gauge  

The NOAA Climate Prediction Center (CPC) has developed a unified gauge-based  

analysis of global daily precipitation known as the CPC-Gauge (0.5°, 1979–present), which is  

the first product of the CPC Unified Precipitation Project (Xie et al., 2007; Chen et al., 2008).  

The primary objective of this project was to produce a suite of unified precipitation products  

with consistent quantities and enhanced quality by integrating all available information sources  

at CPC and utilizing the optimal interpolation (OI) objective analysis technique. CPC-Gauge  

data can be downloaded from the following website:  

https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/.  
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2.2 ERA5  

ERA5 has significantly improved data quality, finer spatiotemporal resolution (1-hourly  

and 0.25°), and longer temporal spans (1950–present) than its widely used predecessor, ERA- 

Interim, owing to enhancements in model processes, core dynamics and data assimilation (Dee  

et al., 2011; Hersbach et al., 2020). It provides data on numerous atmospheric, land-surface  

and sea-state parameters, and its successful public release has facilitated further application  

across various scientific communities. In this study, the parameter of total precipitation in  

ERA5, which represents the total amount of liquid and frozen water (including rain and snow),  

was used. ERA5 can be available online at https://doi.org/10.24381/cds.adbb2d47.   

2.3 ERA5-Land  

The ERA5-Land dataset (0.1°, 1-hourly, 1950–present) is a replay of the land component  

of the ERA5 climate reanalysis, offering a consistent view of land parameter evolution over  

the past few decades at an enhanced resolution compared to ERA5 (Hersbach et al. 2020). The  

fine spatiotemporal resolution makes ERA5-Land particularly useful for various land surface  

applications and may serve as the first hourly dataset for describing water fluxes and energy  

balances on the global land surface at a spatial resolution of 0.1° for over 70 years (Ma et al.,  

2022). The total precipitation parameter from ERA5-Land was utilized in this study and is  

available at https://doi.org/10.24381/cds.e2161bac.  

2.4 IMERG-Late  

IMERG is a representative mapped precipitation product released by NASA that combines  

available microwave-based and infrared-based observations from the GPM constellation and  

geostationary satellites to provide comprehensive information on the microphysics and  

spatiotemporal variations of precipitation globally (Hou et al., 2014; Huffman et al., 2019,  

2020). In this study, IMERG Late Run Version 06B (0.1°, half-hourly, ~18 h latency, hereafter  

referred to as IMERG-Late) was selected, utilizing both forward and backward morphing  

schemes. IMERG-Late can be accessed at https://gpm.nasa.gov/data/directory. Furthermore,  

the hourly scale precipitation dataset was derived by averaging the precipitation intensity from  

two corresponding half-hourly datasets within a specific hour.  

2.5 GSMaP-MVK  

GSMaP, developed by the Japan Aerospace Exploration Agency (JAXA), utilizes Dual- 

frequency Precipitation Radar (DPR) onboard the GPM core observatory, passive microwave  
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radiometers on GPM constellation satellites, and infrared sensors on geostationary satellites to  

provide an hourly global precipitation distribution map with a high spatial resolution of 0.1° ×  

0.1° (Kubota et al., 2007). GSMaP products include standard, near-real-time, real-time, and  

reanalysis products. In this study, we utilized the latest version 07 standard research product,  

GSMaP-MVK, which does not incorporate gauge information corrections (Mega et al., 2019)  

and is available on the JAXA Global Watch website (https://sharaku.eorc.jaxa.jp/GSMaP).  

2.6 GSOD  

 The Global Surface Summary of the Day (GSOD) dataset includes precipitation  

information from approximately 12,000 certified global ground meteorological stations, and  

provides daily files summarizing the meteorological observations working in the corresponding  

days (NCEI, 1999). For each measurement day, the binary occurrences of fog, rain, snow, hail,  

thunder, tornado are recorded, in addition to common meteorological measurements, such as  

minimum and maximum temperatures, mean relative humidity, mean visibility, mean wind  

speed, and precipitation amount. GSOD data can be obtained from  

https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/.  

2.7. APHRODITE  

The Asian Precipitation – Highly Resolved Observational Data Integration Towards  

Evaluation (APHRODITE) dataset is a state-of-the-art gauge-based analysis dataset known for  

its finest spatiotemporal resolution and high quality data, integrating the largest number of  

ground observations from various Asian countries (Kamiguchi et al., 2010; Yatagai et al., 2012,  

2019). Since its release, the APHRODITE dataset has garnered significant attention in water  

cycles-related investigations (Ji et al., 2020) and has been regarded as the “ground truth” or  

benchmark observations (Duncan and Bigg, 2012; Tan et al., 2020) for calibrating satellite- 

based precipitation retrievals, such as IMERG-Final (Ma et al., 2020). In this study, gridded  

daily precipitation of APHRODITE_Japan Version 1207 (0.05°, daily, 2009–2016; Kamiguchi  

et al., 2010) was adopted as the ground truth to evaluate the daily gridded precipitation  

estimates over Japan. The APHRODITE_Japan products can be accessed at  

http://aphrodite.st.hirosaki-u.ac.jp/download/.   

2.8 CHIRPS  
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The Climate Hazards Group Infrared Precipitation with Stations dataset (CHIRPS, 0.05°,  

daily, 1981–present; Funk et al., 2015) was developed using ‘smart’ interpolation algorithms  

and high spatiotemporal resolution precipitation estimates derived from infrared Cold Cloud  

Duration observations. The key characteristics of CHIRPS include: (1) a 0.05° climatology that  

integrates satellite information to effectively represent sparsely gauged or non-gauged regions;  

(2) the provision of daily, pentadal, and monthly 0.05° Cold Cloud Duration-based  

precipitation estimates at the same resolution; (3) the incorporation of gauge network  

observational data to create a final product with an average latency of about approximately  

three weeks; and (4) the implementation of a novel blending strategy that utilizes the spatial  

correlation structure of Cold Cloud Duration estimates to assign interpolation weight.  

Furthermore, the CHIPRS is significant in various application fields, including hydrologic  

simulations, climate change assessments, and improved early warning. The CHIRPS products  

can be accessed at https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily.  

2.9 Stage IV  

Stage IV analysis was derived from the multi-sensor hourly and 6-hourly “Stage III”  

analyses produced by the 12 River Forecast Centers (RFCs) in the contiguous United States  

(CONUS), which were based on local 4 km polar-stereographic grids. The National Centers  

for Environmental Prediction (NCEP) mosaics Stage III data into a national product, known as  

Stage IV, which offered 1-hourly, 6-hourly, and 24-hourly analyses (the latter accumulated  

from the 6-hourly data). Unlike NCEP Stage II, which lacked manual quality control (QC),  

Stage IV benefited from manual QC performed on Stage III data at the RFCs. As of April 2017,  

this dataset includes stations in Alaska and Puerto Rico. The Stage IV analysis utilized in this  

study can be accessed on the designated website https://data.eol.ucar.edu/dataset/21.093.   

2.10 Ground point-based precipitation dataset  

In this study, hourly rain gauge observations from approximately 67,000 Chinese  

meteorological stations were collected from the National Meteorological Information Center  

of the China Meteorological Administration for multiscale evaluation. These rain gauge  

precipitation datasets underwent three levels of quality control: extreme value, internal  

consistency, and spatial consistency checks (Shen et al., 2014). This ground point-based  

precipitation dataset has not been directly utilized in the merging-and-calibration framework  

proposed by this study. It is available at the hourly scale for Mainland China from the website  

http://data.cma.cn.  
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3. Methodology  

3.1 Merging-and-Calibration framework for optimally integrating global multi-source  

precipitation datasets  

Current algorithms have paid limited attention to generating global multi-source merged  

precipitation estimates that fully consider both precipitation occurrences and volumes  

simultaneously at high spatiotemporal resolutions of 1-hourly and 0.1° (Beck et al., 2017,  

2019; Ma et al., 2020, 2022), posing challenges for revealing precipitation variability under  

changing climatic conditions (Douville et al.,2021; Zhang et al., 2021; Jiang et al., 2023;  

Zhang et al., 2024). To address this concern, this study proposed an advanced and practical  

merging-and-calibration framework for generating a fully global multi-source merged  

precipitation dataset with high resolution and quality for both precipitation occurrences and  

volumes. First, morphological and optimal theories were applied to consider these factors in  

the merging process of gauge-, satellite-, and reanalysis-based precipitation datasets on a daily  

scale guided by point-based gauge information (Zhu et al., 2022). Second, an updated triple  

collocation approach was proposed for merging satellite- and reanalysis-based estimates at an  

hourly scale, specifically addressing precipitation occurrences and volumes without hourly  

gauge information (Lyv et al., 2021; Ji et al., 2024). Finally, daily calibration strategies were  

adopted to calibrate the hourly merged results, using the daily merged results as the  

benchmark (Ma et al., 2020, 2022).  This proposed framework consisted of six main steps:  

(1) spatiotemporally collocating multi-source precipitation datasets, (2) identifying global  

precipitation occurrence maps on a daily scale, (3) merging multi-source precipitation  

volumes on a daily scale, (4) identifying global precipitation occurrence maps on an hourly  

scale, (5) merging multi-source precipitation volumes on an hourly scale, and (6) calibrating  

hourly merged estimates using daily merged estimates under a total volume control strategy  

(Figure 1).  

A. Spatiotemporally collocating the multi-source precipitation datasets  

The basic global coverage and grid resolution were -180° – 180°N and -90° – 90°E at 0.1°,  

utilizing the World Geodetic System 1984 (WGS 84). Subsequently, CPC-Gauge (0.5°) and  

ERA5 (0.25°) were aligned to 0.1° using the nearest neighbor resampling strategy.  

Additionally, IMERG-Late (half-hourly, 0.1°), GSMaP-MVK (1-hourly, 0.1°), and ERA5 and  

ERA5-Land (hourly, 0.1°) were accumulated on hourly and daily scales, respectively.   

B. Identifying the global precipitation occurrence maps at daily scale  
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The morphology-based merging algorithm MASTMA can exhibit significant robustness  

in eliminating the negative effects of false alarm precipitation occurrences from multi-source  

precipitation products (Zhu et al., 2022). Consequently, MASTMA can be utilized to identify  

precipitation occurrences and merge the precipitation volumes on a daily scale. Based on  

morphological theory, the spatial morphological features (SMFs) for CPC-Gauge, ERA5,  

ERA5-Land, GSMaP-MVK, and IMERG-Late were first generated on a global scale using an  

erosion strategy (see Figure 2 from Zhu et al., 2022). Next, point-based GSOD gauges were  

employed to extract SMFs from these products at 0.1° and daily scales. Finally, the reliability  

of the precipitation occurrences for each product were determined by quantifying the  

relationships between the SMFs and the precipitation occurrences recorded by the gauge-based  

GSOD at corresponding locations using sigmoid fitting functions. To account for the  

inadequacy of daily SMFs in constructing sigmoid fitting functions, the parameters for these  

functions were generated based on samples that combined daily SMFs with precipitation  

occurrence information from gauges in the corresponding month, resulting in monthly scale  

parameters for identifying precipitation occurrences. The precipitation probabilities derived  

from the sigmoid functions were then employed as weights alongside the precipitation  

occurrences from multi-source products to determine if a precipitation event occurred in the  

current grid. Ultimately, the merged precipitation occurrence map was established by weighted  

averaging of the precipitation occurrences from multi-source products, along with their  

corresponding weights from the sigmoid fitting functions, represented in binary records.  In  

this study, a weighted average greater than 0.5 was set as the threshold for identifying  

precipitation occurrences.   

C. Merging multi-source precipitation volumes at daily scale  

Only pixels identified as precipitation occurrences occurring were considered when  

merging their precipitation volumes. Because of RMSEs of satellite- and model-based  

estimates, in comparison to ground observations, generally correlate with precipitation  

intensities (Huffman et al., 1997; Ma et al., 2020, 2022), this study employed RMSE as the  

weight for merging multi-source precipitation estimates. These weights were quantified using  

the average and standard deviation derived from the gauge-based GSOD and precipitation  

volumes from satellite and reanalysis products, as shown in Equation (1). The average and  

standard deviation were linearly fitted against the precipitation volumes, with specific intervals  

serving as the independent variables. Ultimately, the merged results were obtained by weighted  
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averaging of the multi-source precipitation volumes according to their corresponding weights  

derived from Equation (2). Detailed derivations of Equations (1) and (2) can be found in  

the study by Zhu et al. (2022).   

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √(𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑥𝑥)2 + 𝑠𝑠𝑠𝑠𝑠𝑠2                                           (1)  

𝑤𝑤𝑘𝑘(𝑥𝑥) = 1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘

/(∑ 1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘

𝑁𝑁𝑁𝑁𝑁𝑁
𝑘𝑘=1 )                                          (2)  

where x represents the precipitation volumes from satellite/reanalysis products; avg and std are  

the linearly fitted averages and standard deviations based on the samples with the gauge-based  

precipitation from GSOD and precipitation volumes from satellite/reanalysis products as the  

independent variable; 𝑤𝑤 denotes the final merging weight for each product; and  𝑘𝑘 represents  

the number of the multi-source products.  

D. Identifying the precipitation occurrence maps for each product at hourly scale  

Although there is limited hourly precipitation information from gauges on a global scale,  

distinguishing the weights of multi-source data from ground observations presents significant  

challenges. To mitigate false-alarm precipitation events from different sources while balancing  

computational efficiency and accuracy, a new erosion strategy was proposed to identify global  

precipitation occurrences on an hourly scale. Following careful comparisons of multi-source  

merged precipitation occurrences at a daily scale from step B with gauge-based records from  

GSOD, it was determined that the GSMaP-MVK exhibited relatively more accurate spatial  

patterns regarding precipitation occurrences. Thus it serves as a benchmark for trimming and  

distinguishing precipitation occurrences for IMERG-Late, ERA5 (over oceans), and ERA5- 

Land (over land). Additionally, two parameters, COV (coverage) and DIF (difference), were  

introduced to determine the erosion times for IMERG-Late, ERA5 (over oceans), and ERA5- 

Land (over land) on an hourly scale, referencing the spatial patterns of precipitation  

occurrences from GSMAP-MVK using Equations (3) – (5). These parameters were  

dynamically determined on the corresponding monthly scale by maximizing the target function  

TF, as outlined in Equation (5). Consequently, precipitation occurrence maps for each product,  

along with their corresponding precipitation volumes, were established on an hourly scale.  

𝐶𝐶𝐶𝐶𝐶𝐶 = (𝑅𝑅_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∩ 𝑅𝑅_𝑜𝑜𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑠𝑠)/𝑅𝑅_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                                    (3)  

𝐷𝐷𝐷𝐷𝐷𝐷 = (𝑅𝑅_𝑜𝑜𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑠𝑠 − 𝑅𝑅_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∩ 𝑅𝑅_𝑜𝑜𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑠𝑠)/𝑅𝑅_𝑎𝑎𝑔𝑔𝑜𝑜𝑔𝑔𝑎𝑎𝑔𝑔                             (4)  

𝑇𝑇𝐷𝐷 = 𝐶𝐶𝐶𝐶𝐶𝐶 − 2𝐷𝐷𝐷𝐷𝐷𝐷                                                          (5)  
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where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  represent GSMAP-MVK; 𝑜𝑜𝑜𝑜ℎ𝑟𝑟𝑟𝑟𝑒𝑒  stands for IMERG-Late, ERA5 (over  

oceans) and ERA5-Land (over land); 𝑆𝑆 represents the area of precipitation occurrence map  

from GSMAP-MVK; 𝑆𝑆_𝑔𝑔𝑔𝑔𝑜𝑜𝑔𝑔𝑔𝑔𝑔𝑔  denotes the entire area over globe; and TF is the target  

function.  

E. Merging multi-source precipitation volumes at hourly scale  

Once the precipitation occurrence maps for each product and their corresponding hourly  

precipitation volumes at are determined, merging these volumes becomes a critical issue,  

particularly when there is limited or no global uniform gauge information or references on an  

hourly scale. To address this, we applied the multiplicative triple collocation (MTC) theory  

(Lyu et al., 2021), a reasonable method originally designed to quantify the uncertainties of  

three datasets with mutually independent errors without requiring a reference truth (Stoffelen,  

1998). TC is extended by Alemohammad et al. (2015), suitable for multiplicative TC (MTC).  

Additionally, Lyu et al. (2020) compared the performances of two weighting strategies using  

MTC: logarithmic RMSE (log-RMSE) and modified RMSE (mod-RMSE), concluding that  

log-RMSE outperformed mod-RMSE due to the potential issues with underestimated inputs  

when using mod-RMSE. Consequently, this study utilized MTC with log-RMSE as its  

weighting strategy (Lyu et al., 2021) to merge the eroded hourly precipitation estimates from  

IMERG-Late, ERA5 (over oceans), ERA5-Land (over land), and GSMaP-MVK in mid- and  

low-latitude regions (60°N–60°S), thereby generating hourly merged precipitation estimates  

while considering precipitation occurrences. Furthermore, owing to the suboptimal  

performance of satellite-based precipitation products in cold areas, ERA5-Merged that  

combined ERA5 over oceans and ERA5-Land over land was regarded as a unique reference  

for high-latitude regions (60°N–90°N and 60°S–90°S) (Tang et al., 2021; Xu et al., 2022; Yan  

et al., 2023; Ji et al., 2024).  

F. Calibrating the hourly merged estimates using the daily merged estimates under the total  

volume control strategy  

At this stage, the global daily merged precipitation estimates (daily, 0.1°) from Step C were  

utilized as the ‘ground truth’ to calibrate and trim the global hourly merged results (hourly,  

0.1°) from Step E, employing a total volume control strategy that referenced spatiotemporal  

disaggregation and calibration algorithms (DSTDCA, Ma et al., 2020; DTVCMDA, Ma et al.,  

2022). Specifically, the ratios of the merged hourly estimate to the accumulated daily result for  

the corresponding day served as weights to disaggregate the global daily merged results for the  
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respective pixels. A situation requiring further processing could occur when the daily merged  

result detected precipitation occurrences, whereas the hourly accumulated result did not. In  

such cases, the hourly merged zero values were updated by equally disaggregating the daily  

merged results across 24 periods in the corresponding grid. After completing these procedures,  

the final GMCP dataset (1-hourly, 0.1°, 2000–present, global) was generated, with the main  

structure shown in Figure 1. One thing needs to be noted is that the GMCP would be updated  

on a monthly scale to guarantee the parameters could be thoroughly trained, in step B, by all  

the point-based GSOD gauges for the fully global scale.  
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Figure 1. Flowchart of Dynamical Merging-and-Calibration framework for generating GMCP dataset.    
3.2 Evaluation metrics  

To comprehensively evaluate the performance of GMCP, ERA5-Land, GSMaP-MVK,  

IMERG-Late, IMERG-Final, MSWEP V2, and CHIPRS against point-based ground  

precipitation observations, gridded Stage IV, and APHRODITE_Japan, this study employed  

three classical continuous verification metrics, including CC, Bias, and root mean square error  

(RMSE), along with a comprehensive diagnostic verification metric, HSS. CC reflects the  

strength of the relationships between the estimated and observed datasets, where Bias and  
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RMSE indicate the degree of deviation between these datasets. HSS represents the capability  

of precipitation estimates to accurately capture precipitation occurrences and has been  

commonly used as a diagnostic verification metric (Ebert et al., 2007; Ma et al., 2022). This  

summary metric considers both the probability of detection and false-alarm ratios. The rain/no- 

rain thresholds were set at 0.1 mm for hourly scale evaluations and 1.0 mm for daily scale  

evaluations (Tang et al., 2020). The equations, value ranges, and perfect values of the  

verification metrics are listed in Table 2. The spatial and numerical distributions of these  

metrics were calculated at different temporal scales at corresponding points or grids,  

incorporating ground-based gauge or radar information over periods spanning one to several  

years and covering various climatological regions and seasons. For instance, hourly and daily  

metric values were computed using pairs of precipitation information from gauges and satellite-  

or reanalysis-based gridded precipitation products at specific rain gauges throughout the study  

period. Additionally, the temporal patterns of metrics were derived from pairs across all rain  

gauges in designated areas over various temporal scales, including hourly and daily.  
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Table2. List of the continuous and diagnostic verification metrics for evaluating precipitation products in  
this study.  

Metrics names Equations Value Ranges (Perfect Values) 

correlation 

coefficient (CC) 
CC = √ ∑ (𝑂𝑂𝑖𝑖 − �̅�𝑂)2(𝐸𝐸𝑖𝑖 − �̅�𝐸)2𝑛𝑛

𝑖𝑖=1
∑ (𝑂𝑂𝑖𝑖 − �̅�𝑂)2𝑛𝑛
𝑖𝑖=1 × ∑ (𝐸𝐸𝑖𝑖 − �̅�𝐸)2𝑛𝑛

𝑖𝑖=1
 [-1, 1] (1) 

relative bias (Bias) bias =
∑ (𝐸𝐸𝑖𝑖 − 𝑂𝑂𝑖𝑖)𝑛𝑛
𝑖𝑖=1
∑ 𝑂𝑂𝑖𝑖𝑛𝑛
𝑖𝑖=1

 [-∞ , +∞] (0) 

root mean square 

error (RMSE) 
RMSE = √1𝑛𝑛∑(𝐸𝐸𝑖𝑖 − 𝑂𝑂𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 [0, +∞] (0) 

heidke skill score 

(HSS) 
HSS = 2(𝐻𝐻𝐻𝐻 − 𝐹𝐹𝐹𝐹)

(𝐻𝐻 +𝐹𝐹)(𝐻𝐻 +𝐹𝐹) + (𝐻𝐻 + 𝐹𝐹)(𝐻𝐻 + 𝐹𝐹) (-∞ , 1] (1) 

Note: 𝑂𝑂𝑖𝑖, observed precipitation; �̅�𝑂, mean observed precipitation; 𝐸𝐸𝑖𝑖, estimated precipitation;  

�̅�𝐸, average estimated precipitation; n, the number of precipitation pairs in the analysis; H, hit  

cases, when both observations and estimates are greater than the rain/no-rain threshold; M,  

missed occurrences, when observations are greater than or equal to the rain/no-rain threshold,  

but estimates are less than the rain/no-rain threshold; F, false alarms, when estimates are greater  

than or equal to the rain/no-rain threshold, but observations are less than the rain/no-rain  

threshold; Z, correct no-rain detection, when both observations and estimates are less than the  

rain/no-rain threshold.  

4. Results   

4.1 GMCP product  

Figure 2 illustrates the global spatial distributions of the Köppen–Geiger climatic zones,  

the mean daily precipitation volumes of GMCP (0.1°), and the differences in mean daily  

precipitation volumes between CPC-Gauge, ERA5, IMERG-Late, GSMaP-MVK and GMCP,  

respectively, for the period from January 1 2001, to December 31, 2020. Overall, GMCP  

effectively captured the general spatial patterns of global precipitation (Figure 2b), with  

significant precipitation volumes observed in tropical regions and minimal volumes in the  
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Antarctic, Arctic, and desert areas, such as the Sahara, Arabian Desert, and Lut Desert. Among  

the datasets, CPC-Gauge exhibited the closet similarity to GMCP, with absolute annual  

differences of less than approximately 1.0 mm/day globally, whereas relatively larger  

discrepancies were observed in the southern polar frost regions of northwestern South America,  

central Africa, Himalayas to the Hengduan Mountains, and New Guinea (Figure 2c).  

Conversely, ERA5 tended to overestimate the precipitation volumes compared to GMCP,  

particularly in the eastern central Pacific Ocean, along the western coastlines of South America,  

in the Himalayan to Hengduan Mountain region, and in New Guinea (Figure 2d). IMERG-Late  

generally overestimated the precipitation volumes in lower latitude regions between 60°S and  

60°N, while underestimating the precipitation volumes in higher latitude regions from 60°S to  

90°S and 60°N to 90°N, with GMCP serving as the reference. Notably, IMERG-Late exhibited  

a distinct spatial discontinuity in the transition from south to north along a latitude of  

approximately 60°N globally, primarily because of differing production strategies for regions  

on either side of this latitude, a concern that has been addressed in the GMCP dataset (Figure  

2e). In contrast, GSMaP-MVK tended to overestimate the precipitation volumes over land  

regions, except for northwestern South Africa, the southern Himalayas, and the Indonesian  

Peninsula, while underestimating the precipitation volumes over oceans, particularly in the  

southern oceans along the belt from 60°S to 50°S (Figure 2f). Moreover, CONUS, Mainland  

China, and Japan were selected as the regions of interest for further comparisons of the  

performance of GMCP and contemporary state-of-the-art gridded precipitation datasets in  

subsequent sections, as illustrated in Figure 2a, considering the density of ground observations  

and the complex topography and climatological zones.   
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Figure 2. Global spatial distributions of (a) Köppen–Geiger climatic zones, (b) the mean daily precipitation  
volumes of GMCP (0.1°), and the differences in mean daily precipitation volumes between (c) CPC-Gauge  
and GMCP, (d) ERA5 and GMCP, (e) IMERG-Late, and (f) GSMaP-MVK and GMCP in the period 2001– 
2020.  
  

The global spatial distributions of the mean annual number of precipitation occurrences  

for GMCP (0.1°) and the differences in mean annual precipitation occurrences between ERA5,  

IMERG-Late, GSMaP-MVK, and GMCP, respectively, from 2001 to 2020 are illustrated in  

Figure 3. According to GMCP, significant precipitation occurrences were primarily  

concentrated in the tropics, southeastern Asia, the northern Pacific and Atlantic Oceans, and  

the southern oceans along the belt of 60°S to 30°S, whereas minimal precipitation occurrences  

were observed in the Antarctic, Arctic, and regions spanning from the Sahara and Arabian  

Deserts to Lut Desert and Tibetan Plateau, as well as in certain ocean areas near the Atacama  

Desert and southern South Africa (Figure 3a). Using GMCP as a reference, ERA5 was found  

to generally overestimate precipitation occurrences, especially over the tropical Atlantic and  

eastern Pacific Oceans, the Sahara Desert, and the southern oceans along the belt from 60°S to  

30°S (Figure 3b). Similarly, IMERG-Late tended to overestimate the precipitation occurrences  

globally, particularly in tropical regions such as the Sahara Desert, while underestimating  

precipitation occurrences in certain areas along the tropical oceans (Figure 3c). GSMaP-MVK  

displayed spatial patterns in estimating precipitation occurrences that were similar to those of  

IMERG-Late in the regions between 60°S and 60°N, albeit with relatively lower magnitudes,  

and demonstrated an underestimation of the precipitation occurrences over the southern oceans  

along the belt from 60°S to 30°S (Figure 3d).  
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Figure 3. Global spatial distributions of (a) the mean annual number of precipitation occurrences of GMCP  
(0.1°) and the differences in mean annual precipitation occurrences between (b) ERA5, (c) IMERG-Late, (d)  
GSMaP-MVK, and GMCP, respectively, from 2001 to 2020.  

4.2 Overall performances of GMCP  

GMCP was compared with model- and satellite-based precipitation datasets at the  

hourly scale against the Stage IV gauge-radar dataset as the ground truth over CONUS. The  

spatial distributions of the evaluation results based on two classical continuous verification  

metrics (CC and RMSE) and one comprehensive diagnostic verification metric, HSS, for the  

period from January 1, 2016, to December 31, 2020, are presented in Figure 4. Overall, GMCP  

outperformed the other datasets in CONUS in terms of CC, RMSE, and HSS by effectively  

integrating the advantages of the input datasets. Specifically, for CC, GMCP capitalized on the  

strengths of ERA5-Land in western and northeastern CONUS and those of GSMaP-MVK and  

IMERG-Late in southeastern CONUS. In terms of RMSE, GMCP consistently exhibited  

superior performance and demonstrated similar distributions to ERA5-Land, whereas GSMaP- 

MVK performed the least favorably, particularly across central CONUS, with RMSE values  

exceeding 1.8 mm/hour, followed by IMERG-Late. In terms of HSS, GMCP significantly  

surpassed ERA5-Land, GSMaP-MVK, and IMERG-Late in most regions, with HSS values  
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greater than 0.5. Generally, the model-based precipitation estimates, particularly ERA5-Land,  

performed better than two satellite-based estimates, GSMaP-MVK and IMERG-Late, across  

the three evaluated metrics, likely because of the assimilation of ground radar observations in  

atmospheric analysis models (Hersbach et al., 2020; Muñoz-Sabater, 2019). Despite these  

advantages, GMCP still outperformed ERA5-Land, especially in CC and HSS, highlighting  

that GMCP effectively inherited the benefits of both satellite-based and ground-based  

estimates.   

Although IMERG-Final is a calibrated product based on IMERG-Late, the  

improvements in CC and HSS are not significant, indicating limited calibration capabilities  

owing to the coarse resolutions of the calibration coefficients derived from the GPCP dataset  

at monthly and 1.0° scales. However, IMERG-Final exhibited significant improvements in  

RMSE, suggesting that the calibration algorithm effectively adjusted the precipitation volumes.  

In comparison, the calibrated satellite-based precipitation product GMCP (CC ~0.45, RMSE  

~0.65 mm/hour, and HSS ~0.52) outperformed IMERG-Final (CC ~0.27, RMSE ~1.07  

mm/hour, and HSS ~0.41), with the enhancements in CC, RMSE, and HSS of approximately  

66.67%, 39.25%, and 26.83%, respectively, for the period from January 1, 2016, to December  

31, 2020. This demonstrated that the merging-and-calibration framework had significant  

potential for integrating the advantages of multi-source precipitation products at finer  

resolutions.   
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Figure 4. Spatial distributions of the three verification metrics (CC, RMSE, and HSS) over CONUS of  
hourly precipitation datasets, ERA5-Land, GSMaP-MVK, IMERG-Late, IMERG-Final, and GMCP against  
the Stage IV gauge-radar dataset as the reference, in the period from January 1, 2016 to December 31, 2020.   
  

The GMCP dataset was further compared with ERA5-Land, GSMaP-MVK, IMERG- 

Late, and IMERG-Final on an hourly scale to accurately capture precipitation volumes and  

occurrences across Mainland China. The spatial distributions of CC, RMSE, and HSS, against  

approximately 67,000 rain gauge observations from January 1, to December 31, 2016, are  

shown in Figure 5. GMCP outperformed the other products, with larger CC and HSS values  

and smaller RMSE values. Specifically, the GMCP’s performance is comparable to IMERG- 

Final and IMERG-Late, with CC values exceeding 0.35 at the majority of gauges,  

significantly surpassing GSMaP-MVK and ERA5-Land. In terms of RMSE, ERA5-Land  

performed well, closely approaching GMCP, whereas GSMaP-MVK exhibited the poorest  

performance across extensive regions, with RMSE values exceeding 1.8 mm/h. In terms of  

HSS, although ERA5-Land, GSMaP-MVK, and IMERG-Late demonstrated reasonable  

performance, GMCP distinctly outperformed them, achieving HSS values greater than 0.50  

Unauthenticated | Downloaded 04/02/25 11:01 PM UTC



31
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-24-0051.1.

 

for the majority of gauges. Overall, GMCP surpassed ERA5-Land, GSMaP-MVK, IMERG- 

Late, and IMERG-Final across all three metrics in Mainland China. Furthermore, GMCP  

notably outperformed the calibrated satellite-based precipitation dataset, IMERG-Final,  

particularly in HSS, with an improvement of approximately 17.95% from January 1, to  

December 31, 2016.  

 The analysis of the performance of these products in Mainland China and CONUS  

revealed three significant findings. First, the model-based ERA5-Land did not significantly  

outperform the satellite-based IMERG-Late and actually performed worse in terms of CC and  

HSS, which may be attributed to the limited ground observations assimilated into the ERA  

models over Mainland China (Hersbach et al., 2020; Muñoz-Sabater, 2019). Second, the  

improvements in IMERG-Final were modest, indicating its limited calibration capabilities  

due to the coarse resolution of calibration coefficients from the GPCP dataset at monthly and  

1.0° resolutions. Third, GMCP demonstrated great potential by effectively inheriting the  

advantages of model-based, satellite-based, and ground-based estimates, while also  

alleviating the negative effects from each input precipitation dataset that drives the merging  

model for generating the GMCP.   
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Figure 5. Spatial distributions of three verification metrics (CC, RMSE, and HSS) over Mainland China of  
hourly precipitation datasets, ERA5-Land, GSMaP-MVK, IMERG-Late, IMERG-Final, and GMCP against  
~ 67,000 rain gauges as the reference, in the period from January 1, to December 31, 2016.  
  

As GMCP dataset provides hourly precipitation estimates, it is really necessary to  

investigate whether GMCP has the ability to capture the characteristics of the diurnal  

precipitation variations. The average diurnal cycles of ERA5-Land, GSMaP-MVK, IMERG- 

Late, IMERG-Final, GMCP and Gauges, at the corresponding ~ 67,000 rain gauges, in the  

period from January 1, to December 31, 2016, over Mainland China are shown in Figure 6. It  

could be clearly seen that GMCP demonstrated the most closely diurnal variations with those  

of gauges both in magnitudes and phases, followed by IMERG-Late and IMERG-Final.  

Though ERA-Land has quietly larger magnitudes, it is still useful for capturing the two peaks  

over Mainland China with the smaller one occurring at 21:00 UTC and the larger one occurring  

at 8:00 UTC. However, GSMaP-MVK has four peaks happening at 3:00, 10:00, 14:00, and  
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20:00 UTC, respectively, demonstrating the least abilities to capture the diurnal variations over  

Mainland China. Therefore, the capability of GMCP in revealing the diurnal precipitation  

variations furtherly illustrates the robustness of the merging-and-calibration framework  

proposed by this study for optimally combining the ERA5, GSMaP-MVK, and IMERG-Late  

together.   

  

Figure 6. Average diurnal cycles based on ERA5-Land, GSMaP-MVK, IMERG-Late, IMERG-Final,  

GMCP and Gauges, at the corresponding ~ 67,000 rain gauges, in the period from January 1, to  
December 31, 2016, over Mainland China.  

  

The ground gauge-based analysis APHRODITE_Japan Version 1207, which featured the  

highest resolution of 0.05° and operated on a daily scale for the period from January 1, 2009,  

to December 31, 2016 (Kamiguchi et al., 2010), was used as the ground truth to evaluate ERA5- 

Land, GSMaP-MVK, IMERG-Late, IMERG-Final, and GMCP on a daily scale, as shown in  

Figure 7. In terms of CC values, GMCP generally performed the best across Japan, with CC  

values exceeding 0.8 in most regions, followed by ERA5-Land, whereas GSMaP-MVK  

exhibited the poorest performance, with CC values below 0.7 in most regions, particularly in  

northern Japan. Notably, IMERG-Final presented significant improvements over IMERG- 

Late, likely because of its calibration schemes. The mean CC values for GMCP, ERA5-Land,  

IMERG-Final, IMERG-Late, and GSMaP-MVK were approximately 0.83, 0.81, 0.77, 0.69,  

and 0.67, respectively. Regarding the RMSE values, GMCP demonstrated the smallest errors,  

with the values bellow 8.0 mm/day, thereby outperforming ERA5-Land. IMERG-Late  
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performed slightly better than GSMaP-MVK; however, both lagged behind IMERG-Final. The  

mean RMSE values for GMCP, ERA5-Land, IMERG-Final, IMERG-Late, and GSMaP-MVK  

were approximately 7.88, 8.68, 9.13, 11.37, and 11.52 mm/day, respectively. In terms of  

precipitation occurrences, GMCP achieved the best overall performance with a mean HSS  

value of approximately 0.68, notably surpassing ERA5-Land, which had a mean HSS value of  

approximately 0.63. Despite being calibrated by gauge analysis, IMERG-Final demonstrated  

limited improvements, with an HSS value of approximately 0.52, which was comparable to  

that of IMERG-Late and GSMaP-MVK, both of which have HSS values of approximately 0.51.   

  

  

Figure 7. Spatial distributions of three verification metrics (CC, RMSE, and HSS) of precipitation datasets,  
ERA5-Land, GSMaP-MVK, IMERG-Late, IMERG-Final, and GMCP, against APHRODITE_Japan as the  
reference, at 0.05° and daily scales over Japan, in the entire period of APHRODITE_Japan from January 1,  
2009, to December 31, 2016.  

  

4.3 Case studies  

To further investigate the performance of GMCP, ERA5-Land, GSMaP-MVK, IMERG- 

Late, and IMERG-Final against ground observations, we focused on the analysis of two  

regional extreme rainfall systems: Hurricane Zeta, which affected the southeastern CONUS,  

and Typhoon Haima, which affected affecting southeastern Mainland China. A detailed  

examination of these events is provided bellow.  
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Hurricane Zeta. GMCP was validated during the landfall of Hurricane Zeta from 1600 UTC  

on October 28, 2020, to 1600 UTC on October 29, 2020, focusing on both spatial distributions  

and quantitative comparisons against the Stage IV gauge-radar (Figure 8). Overall, GMCP  

exhibited the most similar patterns to Stage IV in spatial distribution, followed by ERA5-Land  

(Figures 8a, 8e, and 8f), whereas the satellite-based products GSMaP-MVK, IMERG-Late, and  

IMERG-Final tended to overestimate the precipitation events in northeastern CONUS (Figures  

8b, 8c, and 8d), with an overestimation of precipitation volumes approximately 20% (Figures  

8h, 8i, and 8j). Additionally, GMCP demonstrated the superior performance against Stage IV,  

achieving the highest CC of 0.91, along with the smallest Bias of 0.76% and RMSE of 10.46  

mm/hour, while ERA5-Land recorded the CC, Bias, and RMSE values of approximately 0.86,  

-4.56%, and 12.62 mm/hour, respectively. In contrast, all satellite-based products, including  

GSMaP-MVK, IMERG-Late, and IMERG-Final, exhibited significant errors with RMSE  

values of approximately 20.0 mm/hour, nearly double those of GMCP and ERA5-Land. A  

comparison of IMERG-Late and IMERG-Final revealed improvements only in CC and RMSE,  

whereas the Bias worsened, indicating the potential for further enhancements in the calibration  

strategies.   

  
Figure 8. Spatial patterns of accumulated precipitation from (a) ERA5-Land, (b) GSMaP-MVK, (c)  
IMERG-Late, (d) IMERG-Final, (e) GMCP, and (f) Stage IV gauge-radar for Hurricane Zeta events from  
1600 UTC October 28, 2020 to 1600 UTC October 29, 2020, and scatterplots of accumulated precipitation  
from (g) ERA5-Land, (h) GSMaP-MVK, (i) IMERG-Late, (j) IMERG-Final, and (k) GMCP against Stage  
IV gauge-radar for Hurricane Zeta events from 1600 UTC October 28, 2020 to 1600 UTC October 29, 2020.  
     

Typhoon Haima. GMCP was evaluated during the landfall of Typhoon Haima over  

southeastern Mainland China from 0000 UTC on August 21, 2016 to 0000 UTC on August 22,  
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2016, focusing on both spatial distributions and quantitative comparisons against rain gauge- 

based interpolations (Figure 9). Overall, GMCP outperformed the other products with the  

highest CC of 0.54, along with the smallest Bias of 3.58% and RMSE of 3.04 mm/hour. In  

contrast, ERA5-Land tended to overestimate the precipitation volumes in its spatial distribution  

(Figure 9a) and exhibited a larger Bias of approximately 20% (Figure 9g), which was  

approximately five times greater than that of GMCP. Additionally, while model-based ERA5- 

Land generally performed worse than the satellite-based products GSMaP-MVK, IMERG- 

Late, and IMERG-Final in terms of Bias, it demonstrated better performances in terms of CC  

and RMSE.    

  
Figure 9. The spatial patterns of precipitation measured by (a) ERA5-Land, (b) GSMaP-MVK, (c) IMERG- 
Late, (d) IMERG-Final, (e) GMCP, and (f) rain gauge reference from 0000 UTC August 21, 2016 to 0000  
August 22, 2016, and scatterplots of (g) ERA5-Land, (h) GSMaP-MVK, (i) IMERG-Late, (j) IMERG-Final,  
and (k) GMCP plotted against rain gauge observations during Typhoon Haima, which occurred from 0000  
UTC August 21, 2016 to 0000 August 22, 2016.  
  

5. Discussion  

5.1 Comparisons between GMCP and MSWEP V2 at 3-hourly scale against  

rain gauges over Mainland China  

Unauthenticated | Downloaded 04/02/25 11:01 PM UTC



37
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-24-0051.1.

 

       MSWEP V2 (3-hourly, 0.1°, global, 1979–present) was the first fully global precipitation  

dataset derived primarily from the weighted average of precipitation volumes from nine  

datasets, including gauge, satellite, and reanalysis approaches, including daily gauge data,  

GPCC FDR, WorldClim, CMAP 1707, GPCC 2015, GPCP2.3, CMORPH, TMPA 3B42RT,  

Gridsat, CHIRPS 2.0, GSMAP, HOAPS3.2, JRA-55, ERA-Interim, and MERRA-2 (Beck et  

al., 2019). This dataset has been successfully applied at global and regional scales for various  

purposes such as water resource reanalysis and climatological and weather investigations (Beck  

et al., 2017). Hence, this study compared the performances of GMCP and MSWEP V2 at scales  

of 0.1° and 3-hourly against approximately 67, 000 rain gauges over Mainland China during  

the period from January 1, to December 31, 2016, as shown in Figure 10. Although GMCP  

performed slightly better than MSWEP V2 in terms of continuous verification diagnostics, with  

CC and RMSE values of approximately 0.52 and 1.94 mm/3-hourly, compared to 0.50 and 1.96  

mm/3-hourly for MSWEP V2, it demonstrated the significant improvements in accurately  

capturing the precipitation occurrences. The HSS for GMCP was approximately 0.48,  

compared to 0.40 for MSWEP V2, indicating a notable improvement of approximately 20% in  

accurately detecting precipitation occurrences. Moreover, the analysis of spatial distribution  

reveals an anomalous region in northeastern Mainland China within the MSWEP V2 dataset  

(Figures 10a, 10c, and 10e), characterized by abnormally lower CC and HSS values and larger  

RMSE, which were not present in the GMCP dataset (Figure 10b, 10d, and 10f).   
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Figure 10. Spatial distributions of three verification metrics (CC, RMSE, and HSS) over Mainland China of  
GMCP and MSWEP V2 against ~ 67,000 rain gauges as the reference at scales of 3-hourly and 0.1°in the  
period from January 1, to December 31, 2016.   
  

5.2 Comparisons between GMCP and CHIRPS at daily scale against rain  

gauges over Mainland China  

CHIRPS is also a multi-source merged precipitation product (daily, 0.05°, 1981–present,  

60°S–60°N; Funk et al., 2015), that incorporates five satellite products: Tropical Rainfall  

Measuring Mission 2B31 microwave precipitation estimates (Huffman et al., 2007), CMORPH  

microwave-plus-infrared-based precipitation estimates (Joyce et al., 2004), geostationary  

infrared brightness temperatures (Janowiak et al., 2001), and land surface temperature  

estimates (Wan et al., 2008). When missing TIR values resulted in absent precipitation  

estimates, these gaps were filled using CFS version 2 reanalysis fields (Saha et al., 2010).  

Additionally, CHIRPS utilizes various public gauge-based information and private archives,  

including GHCN monthly, GHCN daily, Global Summary of the Day (GSOD), GTS, and  
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additional observations from national meteorological agencies, primarily in Mexico, Central  

America, South America, and sub-Saharan Africa (Beck et al., 2013; Harris et al., 2014;  

Matsuura et al., 2009; Schneider et al., 2013; Funk et al., 2015).  

Although CHIPRS integrated gauge-, satellite-, and model-based precipitation information,  

it performed notably worse than GMCP against approximately 67,000 rain gauges over  

Mainland China from January 1 to December 31, 2016, as shown in Figure 11. In terms of CC,  

GMCP significantly outperformed CHIRPS, with the mean CC values of approximately 0.74  

and 0.47, respectively. GMCP also demonstrated the considerably smaller errors with mean  

RMSE values approximately 6.33 mm/day compared to approximately 10.24 mm/day for  

CHIRPS, particularly in southeastern China. Regarding the precipitation occurrences, GMCP  

achieved mean HSS values of approximately 0.58, greatly surpassing CHIRPS’s mean HSS  

values of approximately 0.33 at almost all gauges. Overall, GMCP performed nearly twice as  

well as CHIRPS in terms of CC, RMSE, and HSS.   
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Figure 11. Spatial distributions of three verification metrics (CC, RMSE, and HSS) over Mainland China of  
GMCP and CHIRPS against ~ 67,000 rain gauges as the reference at scales of daily and 0.1° in the period  
from January 1 to December 31, 2016.   

  

5.3 Potential reasons for the significant performance of the diagnostic  

indicators Considering the merging of precipitation occurrences  

GMCP demonstrated robustness in merging multi-source precipitation products in terms  

of both volume and occurrence, particularly by significantly improving the accuracy of  

precipitation occurrence capture through the optimal integration of advantages and mitigation  

of the negative effects from various precipitation products. The robustness of GMCP was  

underpinned by at least three key factors: (1) the application of morphological theory to  

optimally identify the precipitation occurrence weights on a daily scale (Zhu et al., 2022); (2)  

a strategy that considers the hourly precipitation occurrences while merging their volumes  

based on the multiplicative triple collocation method (Stoffelen, 1998; Alemohammad et al.,  

2015; Lyu et al., 2021; Ji et al., 2024); and (3) calibration procedures applying the daily multi- 

source merging results to calibrate the hourly merged outcomes under total volume control  

strategy from AIMERG and AERA5-Asia (Ma et al., 2020, 2022). Specifically, GMCP  

identified precipitation occurrences according to the morphological characteristics of  

precipitation occurrence maps, a principle fundamentally distinct from methods such as  

MSWEP V1 and V2 (Beck et al., 2017, 2019), which could first directly remove precipitation  

occurrences with small precipitation volumes. In contrast, GMCP evaluated the reliability of  

precipitation occurrences based on their spatial features by applying morphological and optimal  

theories to assess the reliability of these features across each precipitation product. In the  

GMCP merging process, even pixels with large volumes from multi-source datasets may be  

excluded if deemed unreliable. GMCP can generally assign larger weights to pixels located  

closer to the center of the spatial continuous precipitation occurrence maps, as these pixels  

exhibited greater reliability and were more likely to be identified as precipitation occurrences  

owing to their larger morphological features. Conversely, smaller weights were assigned to the  

pixels farther away from the center, which were more likely to be classified as no-rain events.  

Ultimately, rain gauge-based observations were incorporated to finalize the final weight  

assignment in the merging process from the multi-source precipitation products (Zhu et al.,  

2022).            
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5.4 Potential future directions  

Future improvements in GMCP can be pursued in at least two directions. First,  

dynamically optimizing the parameters in the GMCP model using regional gauge-based  

observations from dense and high-quality networks can enhance the reliability and accuracy of  

the dataset, particularly in mountainous and oceanic areas, at both daily and hourly scales.  

Second, merging additional gridded precipitation datasets from models and/or satellite-based  

retrievals may provide insights into the robustness of GMCP when simultaneously integrating  

a broader array of multi-source precipitation products.  

        The GMCP dataset spans the period from 2000 to the present and offers 1-hourly and 0.1°  

resolutions that remains open for global evaluations and applications. These efforts not only  

emphasized the dataset’s current value but also revealed avenues for ongoing refinements,  

ensuring its utility in hydrological, climatological, and meteorological research, as well as in  

societal applications worldwide.  

6. Data Availability  

GMCP (1-hourly, 0.1°, global, 2000–2024) could be freely accessible at  

https://doi.org/10.11888/Atmos.tpdc.301878 through the National Tibetan Plateau / Third Pole  

Environment Data Center.   

7. Conclusions  

There is an urgent need for fully global gridded precipitation estimates with long-term,  

high accuracy, and fine resolution for various scientific research and societal applications. The  

optimal merging of multi-source precipitation products has been explored extensively. To  

address the current limitations in considering precipitation occurrences, this study proposed a  

novel and flexible multi-source merging-and-calibration strategy that comprehensively  

integrated both precipitation volumes and occurrences, utilizing morphological theory, optimal  

theory, multiplicative triple collocation theory, and merging-and-calibration strategy, thereby  

generating a new fully global precipitation dataset, GMCP (1-hourly, 0.1°, global, 2000– 

Present). Initial evaluations yielded several key conclusions.  

(1) The merging-and-calibration framework effectively integrated the advantages of  

gauge-, model-, and satellite-based precipitation estimates on a global scale while notably  

alleviating the negative effects associated with each input dataset.   
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(2) GMCP (1-hourly, 0.1°, global, 2000–Present) generally outperformed ERA5-Land,  

GSMaP-MVK, and IMERG-Late across various spatiotemporal scales, demonstrating the  

superior performance in regional statistics and extreme precipitation systems throughout  

almost the TRMM–GPM era.  

(3) Despite IMERG-Final being calibrated with gauge analysis at the monthly scale,  

GMCP notably outperformed IMERG-Final, demonstrating the improvements in CC, RMSE,  

and HSS of approximately 66.67%, 39.25%, and 26.83%, respectively, during the period from  

January 1, 2016 to December 31, 2020, over CONUS against the gauge-radar-based Stage IV.  

This performance highlighted the significant potential of the merging-and-calibration  

framework for integrating the advantages of multi-source precipitation products at a resolution  

of 1-hourly and 0.1°.  

(4) Compared with the state-of-the-art multi-source merged fully global precipitation  

dataset, MSWEP V2, GMCP outperformed MSWEP V2 in both precipitation volumes and  

occurrences, with notable improvements in accurately capturing precipitation occurrences,  

yielding HSS values of approximately 0.48 and 0.40, respectively, which indicated an  

improvement of approximately 20% against approximately 67, 000 rain gauges in 2016 over  

Mainland China at a resolution of 3-hourly and 0.1°.  

(5) Compared with another well-known multi-source merged quasi-global daily and 0.05°  

precipitation product, CHIPRS, integrating the gauge-, satellite-, and reanalysis-based  

precipitation estimates, GMCP demonstrated notable improvements on a daily scale, achieving  

enhancements in CC, RMSE, and HSS by approximately 57.45%, 38.18%, and 75.76%,  

respectively, against approximately 67,000 rain gauges over Mainland China in 2016.  

(6) The GMCP dataset could serve as a valuable gridded precipitation data for global  

scientific research and societal applications.  

The results of this study indicate that the merging-and-calibration framework can serve as  

a valuable reference for multi-source merging schemes aimed at generating high-quality global  

precipitation products for both scientific research and operational purposes.  
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