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A B S T R A C T

Quantifying landslide susceptibility saves lives, especially in populous areas exposed to wet climates. However, 
available hydrological data sets such as precipitation and soil moisture are usually from reanalysis with a few to 
tens of kilometers’ coarse resolution compared to the dimensions of landslides. Here we aim to seek substitutes to 
characterize hydrological features with finer spacing for landslide susceptibility assessment encompassing the 
tectonically active California. We synergize remote sensing big data and derivatives including topographic 
characteristics, vegetation index, hydrological variables, land cover, and geological units in different machine 
learning architectures. Our results illuminate that the interferometric coherence derived from synthetic aperture 
radar (SAR) can be an effective hydrological proxy, providing enhanced resolution by three orders of magnitude 
to tens of meters and presenting satisfactory performance, with recalls >85 % and AUCs >90 % in our landslide 
susceptibility models. The consequent spatially continuous landslide susceptibility map further demonstrates the 
effectiveness of high-resolution SAR products in compensating for limitations in traditional hydrological data 
sets. The map and our inferred relationship with the mélange and the distance to faults improve our ability in 
landslide hazard mitigation.

Editor: Jing M. Chen

1. Introduction

Landslides are general natural disasters worldwide and can lead to 
casualties and economic loss. Statistics show that from 1995 to 2014, a 
total of 3876 fatal landslide events occurred globally, resulting in 
163,658 deaths (Haque et al., 2019). The annual loss from landslides can 
reach billions of dollars for a single country (Klose, 2015). Clarifying the 
likelihood of landslide occurrence (i.e., landslide susceptibility) is 
fundamental in landslide prevention and mitigation.

Landslide susceptibility modeling (LSM) largely relies on current 
landslide inventories and various geo-environmental information (e.g., 
morphological, hydrological, and land cover), assuming that mass 
movements will be more likely to occur under similar conditions 
resulting in past and present instability (Reichenbach et al., 2018). 
Landslide susceptibility assessment approaches include qualitative 
methods such as geomorphologic mapping (Reichenbach et al., 2005) 

and landslide inventory analysis (Galli et al., 2008), and quantitative 
methods such as physically-based methods (Mergili et al., 2012) and the 
commonly used statistically-based modeling methods. For the target of 
landslide susceptibility assessment over a large area, statistically-based 
modeling methods, which aim at constructing the relationship be
tween the likelihood of landslide occurrence and various geo- 
environmental factors, have been applied in cases from global (Tang 
et al., 2023), continental (Broeckx et al., 2018), to local scales (Yi et al., 
2022). In the era of big data and artificial intelligence, machine learning 
methods have been intensively utilized in statistically-based damage 
assessment including landslide susceptibility quantification (Wang 
et al., 2021), leveraging geo-environmental factors associated with 
landslide development derived from multi-source remote sensing (RS) 
and geographic information system (GIS) products (Woodard et al., 
2023; Youssef et al., 2023). However, the scales of environmental factor 
products and landslides are different, and the spatial resolution of each 
environmental factor may also be inconsistent. For example, precipita
tion and soil moisture are commonly used in landslide susceptibility 
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modeling, but the spatial resolutions of these products are often on the 
order of kilometers, much greater than the dimensions of most 
landslides.

In the 1970s, Ulaby et al. conducted microwave experiments and 
found that the intensity of ground backscattering is sensitive to water 
content variation, illustrating the possibility of using microwaves to 
invert soil moisture (Ulaby and Batlivala, 1976). Since then, soil mois
ture retrieval has been conducted by both passive microwave remote 
sensing missions, e.g., SMAP (Soil Moisture Active Passive) and AMSR2 
(Advanced Microwave Scanning Radiometer 2) (O’Neill et al., 2021; 
Owe et al., 2008), and active microwave remote sensing missions, e.g., 
METOP-A ASCAT (Advanced Scatterometer) (Bartalis et al., 2007). The 
Copernicus Sentinel-1A/B twin-satellite constellation performs C-band 
synthetic aperture radar (SAR) imaging, providing continuous high- 
resolution global observations over approximately the last 10 years, 
which has been frequently applied in soil moisture retrieval studies (e.g., 
Balenzano et al., 2021; Bauer-Marschallinger et al., 2019). Inspired by 
soil moisture retrieval experiments based on microwave remote sensing 
products, we hypothesize that high-resolution SAR-derived features may 
serve as hydrological proxies in landslide characterization, and test the 
hypothesis by establishing landslide susceptibility models over the 
plate-boundary-scale California using machine learning methods and 
identifying substitutes for hydrological variables from Sentinel-1 prod
ucts. Landslide-prone California is the third largest and most populous 
state in the U.S. Rainstorms in this region may trigger fast-moving 
landslides and accelerate slow-moving landslides. The 1200-km-long 
San Andreas Fault (SAF) system, separating the Pacific Plate and the 
North American Plate at a rate of 20–35 mm/yr, encompasses much of 
California (Southern California Earthquake Data Center, 2013). Coastal 
cliff erosions along the coastal ranges cause bluff retreat and landslides 
as well (Hapke and Green, 2006). The United States Geological Survey 
(USGS) and California Geological Survey (CGS) have reported about 
176k landslides in this state (Mirus et al., 2020). Populous counties like 
Los Angeles, Orange, Santa Clara, and Sonoma host landslides with a 
considerable total area, resulting in relatively high landslide risks 

(Figs. 1b & 1c). Given the vast spatial extent, tectonically active setting, 
varied land cover, and extensive research on geological hazards, Cali
fornia serves as an ideal natural laboratory for developing data-driven 
models to illuminate landslide distribution and critical variables in 
determining landslide occurrences and activities.

This study aims to address the problem of inconsistent spatial scale 
between landslides and hydrological factors in landslide characteriza
tion. We evaluate the effectiveness of SAR-related features as hydro
logical proxies by substituting conventional low-resolution hydrological 
products with high-resolution SAR-derived indicators in landslide sus
ceptibility modeling, which allows for a comparative analysis of model 
performance and susceptibility mapping results. The article is organized 
as follows: Section 1 reviews the literature on landslide susceptibility 
assessment and soil moisture retrieval from microwave products, points 
out the inconsistency issue and potential solution from microwave 
remote sensing products, and provides an overview of our study area. 
Section 2 presents the data derived from multi-source remote sensing 
and GIS products for machine learning. Section 3 describes the data 
preprocessing, the principles of applied machine learning models, and 
the design of our comparative experiments. Section 4 shows the main 
results, including the performance of all the landslide susceptibility 
models, contributions from geo-environmental factors and Sentinel-1 
indicators, and landslide susceptibility maps generated from different 
feature sets. Section 5 discusses the performance of the Sentinel-1- 
derived products in representing the hydrological conditions, and 
other factors affecting the landslide activities in California. Finally, 
section 6 makes the conclusion.

2. Data

Landslide activities are governed by multiple processes including 
topography, geology, land cover, catchment, precipitation, and tec
tonics (e.g., dynamic shaking and aseismic creeping). Remote sensing 
data are beneficial to extract some of these critical parameters on a 
regional scale. Drawing on prior studies (e.g., Reichenbach et al., 2018; 

Fig. 1. Landslides, faults, and population distribution in California. (a) The geological settings and recent big landslide events. (b) The ratio between landslide area 
and entire area, and the population of each county. (c) The landslide risk index of each county with polygon landslide records generated by the landslide area ratio 
and the population.
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Woodard et al., 2023), multiple remote sensing and GIS products were 
applied to obtain those critical features, including surface elevation, 
slope, aspect, and topographic wetness index (TWI) derived from SRTM 
digital elevation models (DEM), the average normalized differential 
vegetation index (NDVI) in summer derived from Landsat 8 OLI images, 
the average soil moisture from SMAP level 3 products, accumulated 
precipitation from GPM (The Global Precipitation Measurement 
Mission) products, the distance to rivers and faults calculated based on 
river and fault distribution GIS products (Lehner and Grill, 2013), the 
geological units and land cover maps compiled by USGS and other 
relevant departments (Dewitz and U.S. Geological Survey, 2021; Hor
ton, 2017). Landslides were labeled referring to the second version of 
the landslide inventory compiled and released by USGS in 2022 (Belair 
et al., 2022; Mirus et al., 2020) (Table 1). It is worth noting that this 
inventory compiles both historical and recent landslides, recorded by 
multiple sources including USGS, NASA, local Geological Surveys, and 
published literature, and only ~20 % of records contain information 
about when landslides occurred. Therefore, in this study, we focus on 
the spatial distribution of potential landslides, rather than predicting 
their timing, which is consistent with the concept of landslide suscep
tibility (Reichenbach et al., 2018).

Here synthetic aperture radar (SAR) products of Sentinel-1 interfer
ometric coherence and backscatter (amplitude), retrieved from Kelln
dorfer et al. (2022), are collected as possible hydrological proxies. Since 
most of California’s precipitation occurs in the winter, we selected the 
median interferometric SAR (InSAR) coherence and mean amplitude 
images covering December 2019 to February 2020 in this data set, which 
originally contains derivatives of Sentinel-1 SAR images acquired over 
one year from December 2019 to November 2020. For comparison, we 
also sourced the average soil moisture and accumulated precipitation 
features over the same period.

3. Methods

3.1. Preprocessing

Statistically-based landslide susceptibility models are usually ob
tained by fitting statistical models or training machine learning models 
with multi-source geo-environmental factors as features (“independent” 
variables) and landslides as labels (“dependent” variable) (Reichenbach 
et al., 2018). In this study, all the original data, including geo- 
environmental factors, landslide inventory, and SAR products, were 
rasterized, registered, and resampled at a resolution of 90 m, same as 
that of the original DEM. The landslide inventory was used to produce 
sample labels, and other variables constituted sample feature sets. 

Continuous features were standard scaled, and the one-hot encoding was 
applied to the three categorical variables (i.e., aspect, geological unit, 
and land cover) so that the ranges of values are comparable for all fea
tures. Maps of all the prepared variables are shown in Fig. 2.

3.2. Machine learning workflow of initial models

Employing multiple machine learning methods can enhance land
slide susceptibility assessments, leveraging algorithmic diversity to 
address model limitations, data complexity, and uncertainty, while 
enabling comprehensive validation of SAR-derived features as hydro
logical proxies. We selected three machine learning models: logistic 
regression (LR), support vector machine (SVM), and random forest (RF). 
Logistic regression is a classical binary classification method in machine 
learning, known for its efficiency and low computational requirements. 
The method’s core is to apply a logistic sigmoid function on a linear 
function (Bishop, 2006). For a binary classification case (class C1 and 
C2), the posterior probability of class C1 can be written as the logistic 
sigmoid σ(a) acting on a linear function of the feature vector ϕ: 

p(C1|ϕ) = y(ϕ) = σ(w⊤ϕ) =
1

1 + exp( − w⊤ϕ)

p(C2|ϕ) = 1 − p(C1|ϕ)
(1) 

where w contains the weight parameter of features, and the model 
training is exactly the process of determining w using features ϕ and the 
binary label (landslide or non-landslide) in the training set. In our study, 
the landslide susceptibility is given by p(C1|ϕ) and p(C2|ϕ).

For a binary classification problem, a linear model describing the 
relationship between prediction results and features is in the form of 
(Bishop, 2006): 

y(x) = w⊤ϕ(x)+ b (2) 

where ϕ(x) is the feature-space transformation, or kernel function (in 
this study we only used a linear kernel). The training set x (including N 
samples x1, …, xN) corresponds to N target values t1,…, tN where 
tn ∈ { − 1,1}. The objective of a support vector machine is to find a 
hyperplane (i.e., decision boundary) in the feature space that maximizes 
the minimum distance (a.k.a., margin) from each class (Cortes and 
Vapnik, 1995). The distance of a correctly classified sample point xn 
(which satisfies tny(xn) > 0) to the decision boundary is as follows: 

tny(xn)

‖w‖
=

tn(w⊤ϕ(xn) + b )
‖w‖

(3) 

Since rescaling w and b synchronously won’t change the distance, 

Table 1 
Data source and the original spatial resolution of features.

Data type Feature Source Original spatial 
resolution

Period

Topographic data Elevation, aspect, 
curvature, slope, TWI

SRTM DEM 30 m February 2000

Optical images NDVI Landsat 8 OLI 30 m June to September from 2014 to 2023
Hydrometeorological 

data
Precipitation GPM 0.1◦ (~10 km) December 2019 to February 2020 (daily 

accumulation)
Soil moisture SMAP 9 km December 2019 to February 2020 (daily 

average)
River distribution Distance to the nearest 

river
HydroRIVERS Version 1.0 (secondary products of 
HydroSHEDS v1)

Vector The core data products of HydroSHEDS v1 were 
derived primarily from the SRTM DEM (2000)

Fault distribution Distance to the nearest 
fault

Quaternary Fault and Fold Database of the United 
States

Vector –

Land cover Land cover categories NLCD Land Cover (2019) 30 m 2019
Geological unit Geological unit 

categories
SGMC Geodatabase of the Conterminous United 
States

Vector –

SAR Products Amplitude and 
coherence

Global seasonal Sentinel-1 interferometric coherence 
and backscatter data set by Kellndorfer et al. (2022)

90 m December 2019 to February 2020

Landslide inventory Landslide distribution USGS Landslide Inventories across the United States 
(Version 2)

Vector –
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and given the constraint of tny(xn) ≥ 1 (because the distances between 
the decision boundary and samples are equal or greater than the 
margin), the task of finding the best boundary is transformed into an 
optimization problem. To avoid overfitting, we allow some training data 
to be misclassified but with a certain penalty. Therefore, a slack variable 
ξn ≥ 0 is introduced, and the optimization problem becomes: 

argminC
∑N

n=1
ξn +

1
2
‖w‖

2 (4) 

where the parameter C > 0 is the trade-off controlling between penalty 
and margin. And the constraint becomes tny(xn) ≥ 1 − ξn.

Random forest relies on the ensemble learning technique that in
tegrates decision trees (DT) through bagging or bootstrap aggregating to 
achieve better performance than a single model (Breiman, 2001; James 
et al., 2021). Bagging or bootstrap aggregation is a sampling strategy 
that repeatedly resamples with replacement from the original data, so 
each classifier in the ensemble is trained using a subset of the whole 
input data set, which can effectively reduce the variance and improve 
the robustness of the model (James et al., 2021). A DT model consists of 
several nodes and directed edges, and a parent node is connected to 
child nodes by these edges. When applying a DT for classification, the 

top and internal nodes yield a split based on a certain feature, and ter
minal nodes at the bottom represent classification results (James et al., 
2021).

To build an RF classifier, first, the bootstrap resampling method is 
applied to the original data set to create B different training data sets. 
Then B different DT models are trained separately using those subsets. 
The final classification decision is made by taking a majority vote on all 
the B predictions. In addition, to decorrelate those trees and reduce 
variance, RF does not consider all the available features at each split, 
only a random sample of m features is chosen as split candidates from 
the full set of p features, and usually m =

̅̅̅p√ (Hastie et al., 2009).
We initially attempted to develop landslide susceptibility models 

using all the conventional geo-environmental variables (i.e., no SAR 
products were included in the initial feature set). To avoid data skew and 
improve model performance (Zhou et al., 2018), the ratio of the number 
of positive (landslide) and negative (non-landslide) samples was set to 
be about 1:1 (~814 k landslide and non-landslide pixels, respectively). 
In order to obtain negative samples as representative as possible, the 
non-landslide pixels were randomly sampled in equal proportion from 
each land cover type in non-landslide areas. The data set was split into 
training and test sets in a 7:3 ratio, each with the same portion of pos
itive and negative samples. After training, the model performance was 

Fig. 2. Maps of multi-source geo-environmental variables and SAR products.
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evaluated using the test set by metrics including accuracy, precision, 
recall, F1 score and receiver operating characteristics curve and area 
under the curve (ROC curve and AUC), and the contributions of different 
features to the model output (i.e., feature importance) were also 
assessed. All the models were trained and tested using sklearn tool in 
Python, with the parameter “random_state” (which controls the 
randomization in sklearn algorithm) setting as 0. And to accelerate the 
process on our large data set, we applied thundersvm library (Wen et al., 
2018) to enable GPU computing in SVM model training and prediction.

3.3. Feature importance

The weight w of features in the LR model can represent the impor
tance of each feature (Eq. 1), with a larger absolute value implying a 
greater contribution of the corresponding feature. Similarly, in the 
linear SVM model, the w in Eq. (2) also assesses feature contribution, 
where larger absolute values indicate greater importance (Chang and 
Lin, 2008).

An RF model is an ensemble of several DTs. For each DT, the criterion 
determining the split of each internal node is called Gini impurity. In the 
classification, supposing there are K classes in total, for node m (i.e., 
feature m), let pmk be the proportion of class k observations in this node, 
then Gini impurity is calculated by (Hastie et al., 2009): 

Gini(pmk) =
∑K

k=1

pmk(1 − pmk) (5) 

For a binary classification problem, if p is the proportion in the 
second class, then Gini impurity can be written as: 

Gini(p) = 2p(1 − p) (6) 

The contribution or importance of a feature can be represented by 
the variation of Gini impurity after the node is split into two descendant 
nodes (a.k.a., Gini decrease or Gini gain): 

VIMm = Ginim − (Ginil +Ginir) (7) 

in which Ginim is the Gini impurity at the node to be split, Ginil and Ginir 

are the Gini impurity at the descendant left and right nodes, respec
tively. VIMm represents impurity decline caused by the split strategy. A 
large impurity decrease implies an appropriate selection of the feature 
and corresponding threshold, as well as a great contribution of this 
feature. In the RF model, Gini importance of a certain feature is the 
average “Gini decrease” of the same feature in all the “trees” (James 
et al., 2021). Feature importance evaluation results of the three initial 
models are shown in Fig. 3. Since all the geo-environmental factors were 
included, the feature importance rankings from initial LR and SVM 
models can be influenced by feature collinearity, while the RF model 
does not consider all the available features at each split, reducing the 
impact of collinearity. However, the initial rankings can still assist in 
preliminarily determining variable contributions.

3.4. Feature selection and combination for simplified models

In the initial training, we fed all the geo-environmental variables into 
three categories of machine learning models, tested their performance, 
and ranked the feature importance. Thereafter, to test the substitution of 
SAR products for conventional hydrological products, as well as avoid 
inaccurate evaluation of feature importance due to feature redundance 
and collinearity, we conducted feature selection based on Pearson cor
relation coefficients and principal component analysis (PCA), while 
considering feature importance rankings from initial models to ensure 
the representativeness. In terms of Pearson correlation, soil moisture, 
precipitation, and NDVI are highly positively correlated, while InSAR 
coherence is negatively correlated with these factors (Fig. 4a). For 
continuous features, we considered the PCA component matrix and 
selected one or two original variables with high loading values (i.e., 
correlation coefficients between each original feature and principal 
component) in the same principal component (Fig. 4b). The first prin
cipal component mainly relates to hydrological conditions, indicated by 
high loading values of soil moisture, precipitation, and NDVI. InSAR 
coherence has a significant negative correlation with this component, 
further indicating its potential as a hydrological proxy. In the second 
principal component, DEM, TWI, and slope present higher loading 
values, implying a correlation with the topography. The third to sixth 

Fig. 3. Feature importance evaluations of initial models with all geo-environmental features.
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components capture surface curvature, fault distance, and river prox
imity. The cumulative initial eigenvalues of the first seven principal 
components account for more than 90 %, so we only kept the first seven 
columns of the component matrix. For categorical features, among 
different surface aspects, southwestern and northeastern directions were 
kept because they are predominant in landslide samples (Fig. 4c). 
Among the geological units, categories of igneous and mélange unique 
to California were selected for their relationship with landslides (Fig. 4d, 
see also Xu et al., 2021). Land cover types were all dropped since they 
have been applied in sampling negative samples, and some of them show 
correlation with existing features (e.g., forest land cover relates to hy
drological features, and crop land cover is correlated with slope since 
fields are concentrated in the central valley in California).

Combined with geo-environmental feature importance revealed by 
initial models (Fig. 3), in addition to hydrological variables (i.e., pre
cipitation or soil moisture) or SAR products (i.e., coherence or ampli
tude), we only considered elevation, slope, curvature, fault distance, and 
river distance as the continuous features, and southwestern aspect, 
northeastern aspect, igneous and mélange geological units as categorical 
variables in our simplified models. To assess the improvement of land
slide susceptibility assessment by replacing coarse-resolution hydro
logical features with SAR-related features, we compared five feature 
combination strategies: i) using no hydrological or SAR features; ii) 
using precipitation and iii) soil moisture as hydrological features; iv) 
using InSAR coherence and v) InSAR amplitude as hydrological proxies. 
To be more inclusive and avoid bias in the sampling, negative samples 
were repeatedly sampled 100 times for each feature combination (by 
setting the random_state parameter in the sample function from 0 to 99, 
respectively), resulting in 100 different data sets with a 1:1 ratio of 
positive and negative samples. For each feature combination and each 
machine learning method, 100 different models were obtained from the 
100 data sets. All the simplified models were trained and tested with the 
same train test split ratio as the three initial models (i.e., 7:3), with the 
random_state parameter setting from 0 to 99. The workflow of our ex
periments is illustrated in Fig. 5.

4. Results

The performance of landslide susceptibility models (measured by 
metrics including recall, AUC, etc.), along with mapping results ob
tained from different feature sets, illustrates how SAR-derived indicators 
can characterize hydrological conditions favorable for landslides from 
both quantitative and qualitative perspectives.

4.1. Landslide susceptibility model performance and feature importance

The metrics of three initial models and the average metrics of 15 
types of simplified models are shown in Table 2 and Fig. 6. For each type 
of machine learning method and feature set, the metrics of simplified 
models were calculated by averaging the metrics of 100 different models 
trained by 100 different sample sets. Recalls of our initial landslide 
susceptibility models, which include all the collected geo-environmental 
features, are higher than 90 %, suggesting a low omission of true land
slide samples. All the metrics of the RF model are evidently better than 
those of the other two machine learning methods, while the perfor
mance of LR and SVM models is comparable. The SVM model shows 
slightly higher recalls than that of LR (Table 2a).

After feature selection, the simplified models show reduced metrics 
but still retain recalls higher than 85 % and AUC higher than 90 % 
(Table 2b). For these three categories of machine learning models, the 
performance of landslide susceptibility models using precipitation or 
soil moisture as hydrological features is very close (see the rows of (ii) 
Precipitation and (iii) SoilM in Table 2b). When InSAR coherence is 
applied to replace conventional hydrological features, the metrics of LR 
and SVM models are almost unchanged, but the performance of the RF 
model drops slightly (see the rows of (iv) Coherence in Table 2b). The 
slight decline might be attributed to the issues of obvious quadrangle 
boundaries in the landslide distribution map caused by diverse sources 
of this compiled inventory (Mirus et al., 2020). These unnatural spatial 
boundaries coincidentally align with the coarse-resolution hydrological 
products in space (e.g., Fig. 10a), resulting in slightly better performance 
of models using hydrological products than that using fine-resolution 

Fig. 4. Relationship between prepared features indicated by (a) Pearson correlation (‘LC’: land cover, ‘GU’: geological unit). (b) PCA component matrix. Loading 
values with the largest absolute values and those larger than 0.5 are highlighted. (c) Surface aspect and (d) geological unit distribution in landslide and non- 
landslide samples.
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InSAR products. Nevertheless, the employment of InSAR coherence can 
improve performance over models without any hydrological or SAR 
features (see the rows of (i) w/o set in Table 2b). In contrast, adding SAR 
amplitude does not significantly enhance the model’s ability to distin
guish between landslides and non-landslides (see the rows of (v) 
Amplitude in Table 2b).

The absolute value of coefficients in LR and SVM models and Gini 
impurity in RF models were used to sort out the feature importance. Due 
to potential feature collinearity, the feature importance rankings of the 
initial models may be inaccurate. However, they can still generally show 
that hydrological features, fault distribution, and some topographic 
variables (e.g., elevation and slope) significantly contribute to the 
landslide susceptibility model, and mélange geological unit and south
western aspect are of greater importance than other categories (Fig. 3).

After feature selection, precipitation, soil moisture, and InSAR 
coherence are equally and highly ranked in feature importance of their 
respective LR and SVM models. In RF models, while precipitation or soil 
moisture ranks first, the importance of topography and fault distance 
features comes to the fore when applying InSAR coherence as the hy
drological feature proxy (Fig. 7).

4.2. Landslide susceptibility maps over California

Given the better performance of RF models compared to the other 
two categories of models, we obtained the landslide susceptibility maps 
over California using RF models with precipitation, soil moisture, and 
InSAR coherence features, respectively (Fig. 8). The model applied is the 
one closest to the median AUC for each feature combination. The maps 
made by models with precipitation and soil moisture show significant 
spatial discontinuities, as those unnatural “blocks” and abrupt jumps in 
zones A, B, and C in Fig. 8a and b, resulting from coarse resolution of 
precipitation and soil moisture products as well as the quadrangle 
boundaries in the original landslide inventory (Mirus et al., 2020). 
Replacing coarse-resolution hydrological products with high-resolution 
SAR products can eliminate those discontinuities, as shown in Fig. 8c.

To facilitate the comparison of landslide susceptibility results and 
reduce the impact of minor variations in the data (Barman and Das, 
2024), we also conducted natural breaks (Jenks) classification on the 
three susceptibility maps, dividing the landslide susceptibility into five 
levels: very low, low, moderate, high, and very high. In the map 
generated from the RF model using precipitation (Fig. 8a), 80.21 %, 
6.75 %, 4.24 %, 3.82 %, and 4.99 % of the study area fall within very 
low, low, moderate, high, and very high landslide susceptibility levels. 

Fig. 5. Workflow on deriving the hydrological proxy from SAR / InSAR indicators in landslide characterization.
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For susceptibility assessed by the RF model with soil moisture (Fig. 8b), 
the proportions in the five levels are 78.89 %, 8.13 %, 4.67 %, 3.55 %, 
and 4.77 %, respectively. For the RF model with InSAR coherence 
(Fig. 8c), the corresponding proportions are 73.62 %, 8.82 %, 5.19 %, 
5.26 %, and 7.11 %, respectively. The similar susceptibility distributions 
across different maps indicate the rationality of using InSAR coherence 
as a hydrological proxy.

5. Discussion

The landslide susceptibility model is essential for assessing disaster 
risk, which supports land use planning, infrastructure development, and 
emergency preparedness efforts. We explore the impact of precipitation 
and soil moisture on landslide susceptibility and how SAR features 
(especially InSAR coherence) characterize the hydrological context. 
Other factors affecting landslide occurrence, including fault distribution 
and geological units, are also discussed.

5.1. Precipitation and soil moisture

Hydrological features rank top among contributions of geo- 
environmental factors (Fig. 7). Landslide areas generally experience 
higher accumulated precipitation and average soil moisture than non- 
landslide areas (Fig. 9a). While the susceptibility to landslides in
creases with higher precipitation or soil moisture, they can also develop 
in drier areas (Fig. 9b).

Landslides may occur when shear stress on the shear plane exceeds 
the resisting strength (shear strength) (Lacroix et al., 2020b). Intense 
rainfall can increase water content in the sliding materials and the 
gravity of the landslide masses, thereby increasing the shear stress. It can 
also elevate pore water pressure, reducing the effective normal stress 
and cohesion of materials, which lowers shear strength. Together, these 
processes result in landslide instability (Handwerger et al., 2019; Lu and 
Kim, 2021). Precipitation significantly affects soil moisture, influencing 
landslide occurrences, which are also controlled by soil properties, 
vegetation, and human activities. For example, Lacroix et al. (2020a)

found that irrigation in southern Peru affected soil erosion and initiated 
slow-moving landslides. In addition, the seasonal landslide movement is 
often hydrologically driven, necessitating the establishment of thresh
olds to estimate the timing of landsliding based on rainfall and soil 
moisture (Zhou et al., 2022). For example, Hu et al. (2018) reported that 
the Cascade landslide complex in Washington showed initial subsidence 
when the cumulative precipitation reached 140 mm in 30 days, followed 
by more pronounced downslope movement when the precipitation 
accumulated by ~300 mm thereafter.

5.2. Implication of SAR amplitude and coherence to hydrological 
conditions

We aim to seek alternative hydrological variables when they are not 
available or at insufficient spatial resolution in landslide susceptibility 
assessments. We opted for SAR amplitude and coherence based on the 
intrinsic implication of SAR signals to hydrological conditions. Soil 
comprises particles, air, and water (both free water and bound water). 
The dielectric constant (ε) of soil is closely related to soil water content, 
generally increasing as water content rises due to the large contrast 
between liquid water (ε ≈ 80) and dry soil (usually ε < 10) (Hallikainen 
et al., 1985). Given the relationship between dielectric constant and 
radar backscattering, it is feasible to characterize the soil moisture using 
SAR metrics, e.g., SAR amplitude (intensity of backscattering coeffi
cient) and coherence (interferometric correlation) (Barrett et al., 2009).

A large number of model-based soil moisture retrieval approaches 
rely on SAR amplitude, including theoretical, empirical, and semi- 
empirical models. The integral equation model (IEM) is a widely used 
physically based radiative transfer model (Fung et al., 1992), which 
quantifies the backscattering coefficient as a function of the unknown 
soil moisture and surface roughness and the known radar configuration. 
Semi-empirical scattering models are usually site-independent and can 
also achieve satisfactory accuracy across various scenarios. The water 
cloud model (Attema and Ulaby, 1978) can represent backscatter from 
both vegetation canopy and underlying soil.

Regarding InSAR coherence, De Zan et al. (2014) first built a model 
to relate quantitatively SAR interferometric observables to soil moisture. 
Based on the case of plane wave oblique incidence on a lossy dielectric, 
coherence expression is given by: 

γ =
2j

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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)
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(
kʹ
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*
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(8) 

where kź1 and kź2 are wavenumber in the vertical direction of the two 
SAR acquisitions, which are a function of dielectric constant: 

kʹ
z(έ ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2έ μ − k2
x

√

(9) 

where ω is the angular frequency of the SAR signal, μ is the magnetic 
conductivity, and kxis the wavenumber along air–soil discontinuity 
interface. Variations in soil moisture influence the dielectric constant 
(έ ), which in turn affects wavenumber (kź) and thus InSAR coherence 
(γ).

SAR-derived features have been effectively applied in generating soil 
moisture proxies regarding surface disturbances such as precipitation 
and tropical cyclones. Jordan et al. (2020) extracted decay timescales of 
soil moisture variations after precipitation events from Sentinel-1 InSAR 
coherence time series, showing that InSAR products enable high- 
resolution assessments of soil moisture variations over large areas, 
complementing sparse site observations. Similarly, Bürgi and Lohman 
(2021) derived soil moisture proxies from InSAR coherence after two 
cyclones. Compared to other coarse-resolution soil moisture products, 
high-resolution InSAR coherence data complement the vertical distri
bution of soil moisture, and accurately capture places most affected by 
storms in areas with great spatial heterogeneity. Generally, lower InSAR 

Table 2 
(a) Performance of initial models, and (b) average performance of simplified 
models. The “Feature set” column in Table (b) corresponds to feature combi
nation strategies in Section 3.4.

(a) Initial Models

Model Accuracy Precision Recall F1 score AUC

LR 0.883 0.863 0.910 0.886 0.942
SVM 0.888 0.863 0.923 0.892 0.942
RF 0.962 0.941 0.987 0.963 0.988

(b) Simplified models

Model Feature set Accuracy Precision Recall F1 

score
AUC

LR

(i) w/o 0.857 0.850 0.867 0.858 0.917
(ii) 
Precipitation 0.874 0.866 0.885 0.876 0.933

(iii) SoilM 0.867 0.858 0.879 0.868 0.931
(iv) Coherence 0.871 0.860 0.886 0.873 0.932
(v) Amplitude 0.856 0.844 0.873 0.858 0.918

SVM

(i) w/o 0.857 0.849 0.867 0.858 0.917
(ii) 
Precipitation 0.876 0.867 0.887 0.877 0.933

(iii) SoilM 0.868 0.859 0.881 0.870 0.931
(iv) Coherence 0.872 0.861 0.887 0.874 0.932
(v) Amplitude 0.857 0.845 0.874 0.859 0.918

RF

(i) w/o 0.904 0.872 0.946 0.908 0.954
(ii) 
Precipitation

0.952 0.926 0.983 0.954 0.985

(iii) SoilM 0.952 0.930 0.979 0.954 0.985
(iv) Coherence 0.920 0.891 0.957 0.923 0.965
(v) Amplitude 0.907 0.876 0.948 0.910 0.957
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coherence indicates greater precipitation or higher soil moisture varia
tion over the targeted ground. In Pearson correlation results, InSAR 
coherence is negatively correlated with precipitation and soil moisture. 
In PCA results, the three features all get high loading values in the first 
principal component (The sign of loading value of InSAR coherence is 
opposite to that of hydrologic features, indicating the negative correla
tion) (Figs. 4a & 4b). We can intuitively compare the spatial scales and 
correlations of the two variables by examining Zone B in Fig. 8. The 
landslide inventory is superimposed on the soil moisture map, and pixel 
boundaries of SMAP soil moisture products are outlined on the InSAR 
coherence map, suggesting that the spatial resolution of soil moisture 
products may be too coarse in landslide-related studies, while that of 
InSAR coherence is much more consistent with landslide scales 
(Fig. 10a). The values of soil moisture and average InSAR coherence in 
each soil moisture pixel reveal their negative correlation (Fig. 10b).

InSAR coherence values are usually lower in landslide areas than in 
non-landslide areas (Fig. 9a), indicating generally higher landslide 
susceptibility (Fig. 9b). However, Sentinel-1 satellites operate on C-band 
while SMAP soil moisture products are generated from L-band radiom
eter, which might cause inconsistency due to different interactions be
tween ground targets and the two different microwave bands. Although 
SAR backscattering is not strictly linear with soil moisture and may be 

influenced by factors like soil structure and environmental aridity 
(Ullmann et al., 2023), it still reflects the water content of the ground. In 
applications like landslide susceptibility assessment, the primary 
objective is not to retrieve accurate soil moisture or precipitation from 
InSAR coherence; however, applying high-resolution SAR products as a 
proxy for coarse-resolution hydrological products can indeed improve 
the quality of landslide susceptibility mapping (Fig. 8). In addition, here 
the hydrological and SAR data were acquired from December 2019 to 
February 2020, during which no major wildfires or earthquakes 
occurred in California, mitigating non-hydrological influences on SAR 
features.

Current global data sets of precipitation and soil moisture are 
available, yet these reanalysis or interpolated products are often low in 
spatial resolution (e.g., the finest grid of SMAP soil moisture product is 
only 3 km), limiting their effectiveness in local study sites and small- 
scale study objects. Substituting hydrological features with InSAR 
coherence generated from open-access images like Sentinel-1 can 
improve the resolution to tens of meters worldwide, providing more 
precise information about ground properties. Furthermore, with the 
future availability of NISAR (NASA-ISRO SAR) data with continuous 
temporal and wide spatial coverage, influences on SAR signals caused by 
factors like dense vegetation can be further eliminated due to its longer 

Fig. 6. ROC curves and corresponding AUC values (marked in the legend) for (a) the initial three models and (b) simplified models. In panel (b) all the 100 ROC 
curves for each model and feature set are plotted using lines with certain transparency, and the AUC values in the legend are the average values of correspond
ing models.
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operating wavelength (S-band and L-band), enabling more accurate 
characterization of surface hydrological conditions.

5.3. Faults

In addition to hydrological features, faults also contribute to land
slide development. An enlarged view of San Jose, where the San Andreas 
Fault, Hayward Fault, and Calaveras Fault cut through, shows a corre
lation between landslides and fault distribution. Hydrological condi
tions, InSAR coherence, and geological units of this area are shown in 
Fig. 11.

A 50,000-m-long and 5000-m-wide buffer across the three faults was 
established and divided into 50 units (Fig. 12). The cross-section profiles 
in Fig. 12 show the predicted landslide susceptibility from RF models 
with soil moisture and InSAR coherence feature set of median AUC, 
respectively, as well as the number of landslides recorded in the original 
inventory in each unit. Landslides generally cluster along these faults, 
and the predicted landslide susceptibility results show the same trend 
(Fig. 12c). San Andreas Fault represents the transform boundary be
tween the North American and the Pacific tectonic plates with tectonic 
strain accumulation (Hu et al., 2021). Hayward and Calaveras Fault, as 
two strike-slip faults of the SAF system, show potential for earthquake 
ruptures leading to M > 7 events, posing high landslide risks in the ur
banized environment (Chaussard et al., 2015).

Distribution histograms of the distance to the nearest fault between 
both landslide and non-landslide samples throughout California reveal 
that landslides are characterized by a more pronounced distribution 
close to faults, and about 2/3 of landslide samples are distributed within 
5 km from a fault (Fig. 13). Tectonic activities play an important role in 
the formation and development of landslides. The spatial clustering of 
landslides during earthquakes is usually determined by the seismic 
magnitude and spacing between epicenters or ruptured faults, as well as 

the fault type and slip rate (Huang and Fan, 2013). The 2002 Denali 
Fault earthquake in Alaska resulted in thousands of coseismic landslides 
concentrated in a narrow band of ~15 km on both sides of the rupture 
zone (Jibson et al., 2006). The 2008 Wenchuan earthquake nucleated on 
the Longmenshan thrust fault and triggered nearly 200 k landslides, 
mostly along the Yingxiu-Beichuan surface fault rupture, especially on 
the hanging wall (Xu et al., 2014). In the 2022 Luding earthquake, the 
detected 5007 coseismic landslides in the VII (and above)-degree areas 
were affected by both the seismogenic fault and other active faults (Xiao 
et al., 2023).

For slow-moving landslides, fault activities reduce the strength of 
rock and soil and may increase bedrock weathering rates and landslide 
instability. Scheingross et al. (2013) detected 150 previously undis
covered slow-moving landslides in the SAF zone in California and re
ported that ~75 % of them were distributed within 2 km from the active 
fault. Bontemps et al. (2020) studied a typical slow-moving landslide in 
Peru and found that large earthquakes would reduce the rigidity of 
landslide materials, while a combining effect of small seismic activities 
and seasonal precipitation maintains the multi-annual slow movement 
of hillslopes.

5.4. Geological units of igneous and mélange

Igneous and mélange geological units are conducive to distinguish
ing landslide and non-landslide areas. Landslides on mélange zones 
account for over 53 % of all landslide areas, while those on igneous 
zones account for less than 7 %. The distribution of landslide suscepti
bility for each type of geological unit given by the RF model with soil 
moisture feature set of median AUC is shown in Fig. 14. In samples of 
igneous geological units, the landslide susceptibility is almost no more 
than 0.1, indicating greater stability, whereas that of mélange samples is 
notably higher than other types of geological units. Mélange is 

Fig. 7. Feature importance of simplified (a) LR, (b) SVM, and (c) RF models. The colored bars represent the median feature importance calculated from 100 models 
of each type. The thinner gray bars at the end of the colored bars represent the range of feature importance among the 100 models. The bars of hydrological and 
InSAR coherence features are filled with diagonal patterns.
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Fig. 8. Landslide susceptibility maps of California predicted by RF models with (a) precipitation, (b) soil moisture feature set, and (c) InSAR coherence feature set 
which get AUC closest to the median among 100 models for the corresponding feature combination.

Fig. 9. Distribution of hydrological and InSAR coherence features compared between (a) landslide and non-landslide areas, and (b) different intervals of landslide 
susceptibility results.
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characterized by the lack of internal continuity of contacts or strata and 
the inclusion of fragments and blocks of all sizes in a fragmented matrix 
of finer-grained material (Raymond, 1984). In California, mélange is 
mainly distributed along the northern coast, consisting of various rock 
types jumbled by shearing along faults during the subduction process.

Landslide mapping relying on geological units has historical prece
dent (Pachauri and Pant, 1992), and allows for quantitative analyses of 
the relationship between geological categories and landslide properties. 
Xu et al. (2021) used InSAR method to detect large slow-moving land
slides over the west coast of the States, and noted that the density and 
extent of landslides in the region containing mélange and relatively 

weak metamorphic rocks are twice as large as those nested over the 
sedimentary and igneous rocks. The homogeneous composition, 
discontinuity distribution, high clay content, and relatively low shear 
strength of mélange and metamorphic bedrock are responsible for this 
spatial coincidence.

5.5. Combination of multiple geo-environmental factors

Since a large amount of the data in the original landslide inventory 
lacks descriptions of triggers (e.g., precipitation, earthquakes), the sus
ceptibility of landslides with different triggers was not modeled 

Fig. 10. Soil moisture and InSAR coherence within Zone B in Fig. 8. (a) Soil moisture and InSAR coherence maps, with landslide inventory and pixel boundaries of 
soil moisture products overlaid. (b) Values of soil moisture and average median InSAR coherence (with standard deviations shown by error bar) within each pixel of 
soil moisture products.

Fig. 11. (a) Soil moisture, (b) precipitation, (c) InSAR coherence, and (d) geological units of the area shown in Fig. 12. Three faults are shown in black lines and 
labeled with the names in panel (a) (SAF: San Andreas Fault, HF: Hayward Fault, and CF: Calaveras Fault), and the statistical buffer is shown by the grids.
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separately in this study. However, the characteristics of landslides 
induced by different factors may vary, for example, many rainfall- 
triggered landslides are shallow and in small dimensions, while 
earthquake-triggered rapid failures are usually larger (Cui et al., 2020). 
Archived landslide cases in California with information about landslide 
areas and triggering factors account for 25,036 out of 132,234 records 
(~18.9 %), among which the rainfall-triggered landslides are mostly 
~370 m2 while the earthquake-triggered landslides are ~930 m2 

(Fig. 15). Landslides usually develop due to interactions between mul
tiple geo-environmental factors though triggered or accelerated by 
extreme events (Durand et al., 2018). For earthquake-induced land
slides, precipitation may have reduced the mass strength and tectonic 
activities may have damaged the integrity of rock masses prior to a 
strong shaking (Nowicki Jessee et al., 2018). Meanwhile, precipitation- 
induced landslides are also more likely to occur on weakened rock 
masses (Xu et al., 2020). Therefore, landslide susceptibility assessment 
should consider all primary and secondary geo-environmental condi
tions inclusively.

6. Conclusions

In this study, we investigate appropriate high-resolution hydrologi
cal proxy in landslide characterization in California. To alleviate the 
problem that the spatial resolution of current commonly used hydro
logical products is too coarse to match the size of most landslides, we 
replaced coarse-resolution hydrological features with high-resolution 
InSAR products in landslide susceptibility models, leveraging the cor
relation between radar backscattering and soil moisture. All models 
achieve recalls over 85 % and AUCs exceeding 90 %, with RF models 
outperforming LR and SVM models. The satisfactory model performance 

Fig. 12. Landslide susceptibility around San Jose derived from RF model with (a) soil moisture feature set and (b) InSAR coherence feature set of median AUC. (c) 
Profiles of mean landslide susceptibility and the number of landslides from the inventory within each buffer unit shown in panels (a) and (b). The positions of the 
three faults are marked using black dashed lines.

Fig. 13. Distribution of fault distance of both landslide and non- 
landslide samples.

Fig. 14. Distribution of landslide susceptibility predicted by RF model with soil moisture feature set of median AUC in each type of geological unit.
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and much more continuous landslide susceptibility map provided by 
models using InSAR coherence instead of precipitation and soil moisture 
suggest that fine-resolution InSAR products can act as alternative hy
drological variables and compensate for the inadequate spatial scale of 
existing hydrological data. Given the landslides developed in active 
tectonic environments, the number of landslides decreased with an 
increasing distance from faults. In California, the landslide susceptibility 
is high in the mélange region and low in the igneous region. California’s 
vast extent, environmental diversity, and high landslide frequency 
provided a robust validation of our hypothesis. While previous landslide 
susceptibility assessment studies relied on coarse-resolution hydrologi
cal products, we noted the inconsistency problem in spatial scale and 
addressed it by high-resolution hydrological proxy from InSAR products. 
The rise of remote sensing big data drives us to incorporate machine 
learning approaches to inventory landslides on a large scale and to seek 
alternatives when critical hydroclimate variables are unavailable or 
insufficient, which can also be considered in other hydrology-driven 
hazard characterization.
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