
ISPRS Journal of Photogrammetry and Remote Sensing 221 (2025) 109–123

0924-2716/© 2025 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights are reserved, including those
for text and data mining, AI training, and similar technologies.

A novel framework for river organic carbon retrieval through satellite data 
and machine learning

Shang Tian a,b,c,d,1 , Anmeng Sha a,b,c,d,1, Yingzhong Luo a, Yutian Ke e ,  
Robert Spencer f , Xie Hu g , Munan Ning h, Yi Zhao a, Rui Deng a, Yang Gao i, Yong Liu a,  
Dongfeng Li a,b,c,d,*

a Key Laboratory for Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
b State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Peking University, Beijing 100871, China
c Institute of Carbon Neutrality, Peking University, Beijing 100871, China
d Institute of Tibetan Plateau, Peking University, Beijing 100871, China
e Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
f Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
g College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
h School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong Province, China
i Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 
Beijing 100101, China

A R T I C L E  I N F O

Keywords:
Particulate organic carbon, Dissolved organic 
carbon
Remote sensing, Machine learning
River

A B S T R A C T

Rivers transport large amounts of carbon, serving as a critical link between terrestrial, coastal, and atmospheric 
biogeochemical cycles. However, our observations and understanding of long-term river carbon dynamics in 
large-scale remain limited. Integrating machine learning with remote sensing offers an effective approach for 
quantifying organic carbon (OC) from space. Here, we develop the Aquatic-Organic Carbon (Aqua-OC), a dy-
namic machine learning retrieval framework designed to estimate reach-scale river OC using nearly half a 
century of analysis-ready Landsat archives. We first integrate a globally representative river OC dataset, 
comprising 299,330 measurements of dissolved organic carbon (DOC) and 101,878 measurements of particulate 
organic carbon (POC). This dataset is then used to evaluate the performance of four machine learning methods, i. 
e., random forest (RF), extreme gradient boosting (XGBoost), Support vector regression (SVR), and deep neural 
network (DNN), using an optical water type classification strategy. We further leverage multimodal input fea-
tures to enhance the Aqua-OC framework and OC retrieval accuracy by considering various factors related to OC 
sources and environmental conditions. The results demonstrate that the Aqua-OC can effectively estimate DOC 
(R2 = 0.68, RMSE = 2.88 mg/L, Bias = 2.63 %, Error = 12.52 %) and POC (R2 = 0.76, RMSE = 1.76 mg/L, Bias 
= 6.31 %, Error = 21.36 %). Additionally, the Mississippi River Basin case study demonstrates Aqua-OC’s 
capability to map nearly four decades of reach-scale OC changes at a basin scale. This study provides a gener-
alized method for satellite-based river OC retrieval at fine spatial and long-term temporal scales, thus offering an 
effective tool to quantify the rivers’ role in the global carbon cycle.

1. Introduction

Rivers serve are the essential conduits between continents, oceans, 
and the atmosphere, playing key roles in the storage, transport, and 
transformation of carbon, thereby influencing global carbon cycles 
profoundly (Battin et al. 2023; Hilton and West 2020; Li et al. 2021; 

Regnier et al. 2022; Spencer and Raymond 2024; Zhang et al. 2023). 
However, our understanding and observations of river carbon are 
severely limited by the scarcity of in-field data, making it challenging to 
predict how global change affect the spatial distribution and temporal 
dynamics of river carbon across various scales (Battin et al. 2023). 
Recently, a consortium of hydrologists and biogeochemists have 
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developed a blueprint for a global River Observation System (RIOS) to 
enhance our ability for observing and quantifying this crucial compo-
nent of river organic carbon (OC) in the global carbon cycle (Battin et al. 
2023; Dean and Battin 2024).

To achieve the overarching goals of RIOS, satellite networks are a 
powerful tool for providing spatio-temporal OC products over extended 
time series and mapping river OC dynamics from regional and global 
scales. In particular, Landsat satellites offer fine spatial resolution, short 
revisit cycles of less than a month, and a mission duration of over four 
decades (Wulder et al. 2022), making them an exceptional tool for un-
derstanding historical trends in river OC. Landsat data have been suc-
cessfully applied in mapping other water quality parameters such as 
suspended sediment concentration (SSC) and Chlorophyll-a (Chl-a) in 
long-term series and the global scale (Dethier et al. 2022; Guo et al. 
2022; Maciel et al. 2023; Wang et al. 2025).

River OC, comprising dissolved organic carbon (DOC) and particu-
late organic carbon (POC), has been better understood through recent 
advancements in remote sensing, greatly expanding our knowledge of its 
spatio-temporal dynamics in oceans and inland waters (Fichot et al. 
2023; Griffin et al. 2018; Harkort and Duan 2023; Liu et al. 2019; Liu 
et al. 2021). However, existing methods tend to focus on local OC esti-
mations and neglect the optical properties of water, failing to achieve 
long-term time series and river reach-scale reconstruction of OC dy-
namics. DOC includes colored dissolved organic matter (CDOM), which 
is detectable by satellite sensors in the visible bands (Griffin et al. 2018; 
Liu et al. 2024; Xu et al. 2018). Remote sensing techniques have recently 
emerged as a significant alternative to in-situ measurements, enabling 
the capture of CDOM dynamics over decades (Griffin et al. 2018; Kutser 
et al. 2005; Li et al. 2017; Zhang et al., 2024). However, it remains 
considerable uncertainties to estimate DOC from CDOM: (i) CDOM is not 
the only component of DOC, with the relative amount of non- 
chromophoric DOM varying among different rivers (Spencer et al. 
2012), and the relationship of CDOM/DOC can be weak or exhibit 
seasonal variations in some water bodies (Mann et al. 2016); (ii) CDOM- 
based DOC retrieval approaches have been most successful when CDOM 
dominates the water composition. However, high SSC or Chl-a can 
interfere with the optical signal of CDOM, complicating accurate 
retrieval of DOC (Duan et al. 2014; Herrault et al. 2016). Overall, the 
variability in biogeochemical condition (e.g., DOC, SSC, and Chl-a 
levels) limits the applicability of empirical CDOM retrieval algorithms 
across different sites due to the distinct statistical relationships between 
CDOM and satellite data.

The most commonly used approach for retrieving POC is the SSC- 
based model (Huang et al. 2017; Matsuoka et al. 2022; Wang et al. 
2020), but it has several limitations: (i) successful retrieval of POC from 
SSC depends on a stable POC:SSC ratio (Lin et al. 2018), which can vary 
based on the composition of particles in different optical water types; (ii) 
using the near-infrared (NIR) band is effective for measuring POC in 
highly turbid waters, but the turbidity in areas like some Arctic rivers is 
typically very low (Zhang et al. 2022); and (iii) river POC can be sourced 
from the exogenous (terrestrial erosion) and the autogenous (river bio-
logical production) (Marwick et al. 2015). Thus, SSC-based POC 
retrieval methods can only quantify the source from terrestrial erosion 
but typically not capture aquatic biomass.

The optical water type (OWT) classification strategy and machine 
learning modelling are expecting to solve the above-mentioned limita-
tions. Spectral remote sensing reflectance is a critical optical property 
for deriving optical and biogeochemical properties of rivers that include 
Chl-a, CDOM absorption coefficient (the key element to retrieve DOC) 
and particulate back-scattering coefficient (the key element to retrieve 
POC) (Lee et al. 2002; Lee et al. 2015; O’Reilly et al. 1998). For POC, 
different sources of living and non-living fractions, seasonal changes of 
POC dynamics, and sources mixing (autochthonous production, terres-
trial loading, sediment mixing) impact the spatio-temporal variability of 
water optical properties (Grey et al. 2001; Gu et al. 2006; Martineau 
et al. 2004). OWT classifies complex optical types, thus helping to 

explain the composition of OC and enhancing the retrieval capability of 
the model (Lin et al. 2018). Furthermore, machine learning has the 
potential to overcome the nonlinear, multicollinear, and heteroscedastic 
relationship between satellite images and water quality parameters, 
making it a powerful tool to quantify water quality parameters (includes 
DOC and POC) from satellite data across open ocean, coastal water, and 
inland water (Bonelli et al. 2022; Guo et al. 2024; Harkort and Duan 
2023; Liu et al. 2021; Tian et al. 2023).

This study presents the Aqua-OC framework for retrieving long-term 
OC dynamics across river networks (Fig. 1) and aims to: (i) integrate a 
globally representative river OC dataset, comprising 299,330 measure-
ments of DOC and 101,878 measurements of POC over 1984–2020, and 
thus contributing the river carbon research community; (ii) develop a 
dynamic OC retrieval framework based on machine learning methods 
and OWT classification strategy, providing a globally applicable solution 
for estimating long-term and river reach-scale OC; and (iii) evaluate the 
ability of Aqua-OC framework to reveal the spatio-temporal patterns of 
OC in Mississippi River and analyze the underlying drivers of OC 
changes. To our best knowledge, the Aqua-OC marks the initial effort to 
estimate river OC to align with the RIOS blueprint, expecting to enhance 
the understanding of rivers’ role in the global carbon cycle.

2. Data

2.1. In-situ OC data

Enhancing the integration of in-situ data with the Landsat archive 
necessitates a robust repository of OC observations to elevate the pos-
sibility of achieving spatio-temporal collocation between satellite and 
field samples. In this study, we integrate a comprehensive global OC 
dataset to consider OWTs and ensure enough data to develop machine 
learning models. The data used for OC retrieval model development are 
sourced from: 

1) AquaSat: The AquaSat merges several established public datasets 
encompassing the continental United States, such as the Water 
Quality Portal, LAGOS NE, and the Landsat archive. This integration 
comprises over 28,000 pairings of DOC observations with atmo-
spherically corrected surface reflectance data from Landsat missions 
spanning the period from 1984 to 2019 (Ross et al. 2019).

2) GRQA: The GRQA initiative seeks to enhance water quality data 
coverage by consolidating and harmonizing five national, conti-
nental, and global datasets (Virro et al. 2021). During the GRQA 
compilation process, observation data from the five sources is stan-
dardized into a common format, and the associated metadata is 
harmonized. Outliers are identified and flagged, time series charac-
teristics are calculated, and duplicate observations from sources with 
spatial overlap were detected. The final dataset includes 265,252 
DOC measurements and 98,045 POC measurements.

3) MOREPOC: Ke et al. (2022) introduce MOREPOC (MOdern River 
archivEs of Particulate Organic Carbon), a novel, openly accessible, 
georeferenced global database focused on POC within SSC. This 
database encompasses information on POC levels gathered from 233 
sites spanning 121 significant river systems worldwide. Encom-
passing 3,053 POC records, this database is designed to serve the 
earth system community as a foundational resource for constructing 
comprehensive and quantitative models related to the transport, 
transformation, and ultimate destiny of terrestrial POC. In MOR-
EPOC, five different water depth profiles sampling techniques are 
compiled to measure POC content and composition. We only use POC 
data from surface sampling technology (“type = SS”).

2.2. Matchups between in situ data and satellite data

Due to the highly customizable of sampling time and location of 
public dataset, we implement strict quality control to matchup inte-
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grated OC datasets and Landsat observations: 

1) We use four widely used water surface extraction methods (Dynamic 
Surface Water Extent (DSWE) (Jones 2019), Modified Normalized 
Difference Water Index (MNDWI) (Xu 2006), the Arid Region Water 
Detection Rule (ARWDR) (Zhou et al. 2021), and Automated Water 
Extraction Index (AWEI) (Feyisa et al. 2014)) to ensure the sampling 
location is water pixel to exclude the error or wrong sampling point 
coordinates record. If the pixel of sampling point is identified by all 
water surface extraction method, this sample is proved to be 
effective.

2) We only use the Landsat-5/7 data and exclude Landsat-8 to matchup 
the in-situ measurements to avoid the problem of inconsistency of 
Landsat sensors in the four decades timespan.

3) To minimize errors caused by water movement and the influence of 
temporal variability in OC, we constrain the time difference between 
in situ measurements and Landsat overpass to be within ±1 days. 
Our time window is stricter than other studies that used larger offsets 
of 3–10 days to maximize matchup quantity (Kloiber et al. 2002; 
Olmanson et al. 2008).

4) We extract a 3 × 3 pixels window to exclude the effect of possible 
adjacency effects from the field sample sites and use the pixel qual-
ity_flags assessment bit index to eliminate low-quality pixels. The 
low-quality pixels are eliminated by the QA_PIXEL band bit mask 
technology is: ‘cloud’, ‘snow’, and ‘cloud shadow’.

5) If more than half of the pixels in the window have remained after 
applying the ‘pixel quality flags bit index’ and the coefficient of 

variation (CV) among the remaining pixels is less than 0.15, the 
mean values of these valid retrievals are used.

Finally, we matchup a total of 46,020 OC measurements, including 
36,862 DOC data and 9,158 POC data. The matchups have good tem-
poral and spatial coverage (spatially basically cover the global scale and 
temporally span across 1984 to 2020, Fig. 2). Statistical histogram of OC 
is depicted in Fig. 3. The DOC concentration shows a normal distribution 
and the POC concentration shows a bimodal distribution.

2.3. Meteorological and environmental data

In this study, we incorporate seven environmental variables—high 
vegetation Leaf Area Index (LAI), average LAI for low vegetation, daily 
air temperature, wind speed, surface net solar radiation, evaporation 
over inland waters, and daily precipitation—as inputs into our machine 
learning model to estimate DOC concentration. These environmental 
datasets are sourced from ECMWF Reanalysis v5 (ERA5) Land product. 
Notably, ERA5-Land has demonstrated heightened reliability and ac-
curacy in comparison to gauge or satellite-based products (Harkort and 
Duan 2023). We leverage ERA5-Land data spanning from 1984 to 2023. 
The rules of matchup between ERA5-Land data and in-situ data follow 
the description in Section 2.2.

Fig. 1. The overarching methodological of the Aqua-OC framework. The RIOS blueprint enhances the ability to observe and quantify the role of rivers in the global 
carbon cycle. To develop Aqua-OC, over 400,000 organic carbon (OC) measurements and multimodal input features are used to evaluate various machine learning 
methods and identify the optimal approach for different optical water types (OWTs). Aqua-OC has been deployed on the Google Earth Engine (GEE) platform to 
enable long-term series and river reach-scale OC retrieval.

S. Tian et al.                                                                                                                                                                                                                                     



ISPRS Journal of Photogrammetry and Remote Sensing 221 (2025) 109–123

112

3. Development of Aqua-OC framework

3.1. Machine learning methods

We choose four prominent machine learning algorithms to identify 

the most representative method from diverse machine learning families, 
including tree-based algorithms, kernel methods, and neural networks, 
for predicting OC. The machine learning algorithms are Random Forest 
(RF), eXtreme Gradient Boosting (XGBoost), Support Vector Regression 
(SVR), and Deep Neural Network (DNN). The DNN is implemented in 

Fig. 2. The spatio-temporal mapping of OC matchups. (a, b) The spatial mapping of integrated OC matchups. (c, d) The temporal distribution of integrated OC 
matchups across 1984 to 2020.

Fig. 3. Histogram of OC concentrations of all matchups. The dash line of blue and gray represent the mean and median values, respectively. The mean and median of 
DOC are 5.3 mg/L and 3.8 mg /L, respectively, while the mean and median of POC are 2.3 mg/L and 1.3 mg/L, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
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Tensorflow (version 2.14.0) and all other machine learning models are 
implemented in package scikit-learn (version 1.3.1) in Python 3.8. 
Random samples are generated from the integrated OC datasets with 
7:2:1 split ratio for training set, testing set and independent set, 
respectively. The independent set do not participate in the training and 
calibration processes of modelling and are specifically used to evaluate 
model generalization. We implement 10-fold cross-validation to opti-
mize hyperparameters and assess whether variations in dataset parti-
tioning affect model performance. The summary of hyper-parameters 
used for tuning of these models is given in Table S1. We use the SHapley 
Additive exPlanations (SHAP) to quantify features importance.

RF is an ensemble learning method that builds multiple independent 
decision trees using random subsets of features. These random trees 
collectively form a “Random Forest” with the model prediction derived 
from the average of all outputs from the individual trees. Compared to 
other machine learning methods, RF is straightforward to interpret 
while delivering strong performance, making it a popular choice in 
water quality research (Wang et al. 2022a).

XGBoost is a boosting ensemble algorithm introduced by Chen and 
Guestrin (2016), consisting of multiple regression trees and optimizing 
the gradient boosting decision tree. Each training round builds on the 
results of the previous one. The algorithm incorporates a regularization 
term to control model complexity, helping to prevent overfitting, reduce 
computation time, and achieve the optimal solution efficiently.

SVR is effective for handling small sample sizes and nonlinear 
problems, making it commonly used in remote sensing research, such as 
multiple water quality parameters retrieval (Tian et al. 2023). It is based 
on the theory of structural risk minimization, which constructs an 
optimal classification surface in the feature space, enabling the learner 
to achieve global optimization.

DNN is a feed-forward artificial neural network (ANN) with multiple 
hidden layers, which are fully connected between the input and output 
layer. Many complex regression and classification problems require 
multi-hidden layer DNNs for better data representation, deeper feature 
extraction, and improved accuracy in learning patterns from input data. 
The DNN model has shown effectiveness in various regression problems 
because of its robustness and flexibly (Wang et al. 2022b).

3.2. Optical water type classification

We adopt a robust approach to generate the k-means clustering based 
on four spectral bands (B1-B4) to and exclude the SWIR bands (B5-B7) 
due to less or no information of water properties (Dethier et al. 2020; 
Dethier et al. 2019). Specifically, the k-means algorithm requires a pre- 
determined number of clusters. We utilize the silhouette coefficient 
(with the maximum value indicating the best clustering effect) to 
determine the optimal number of clusters. We implemented k-means 
clustering using the module from Scikit-learn v1.3.1.

The silhouette coefficient of sample i is calculated as: 

s(i) =
b(i) − a(i)

max{a(i), b(i) }
(1) 

a(i) = ave{a(1), a(2), a(3),⋯⋯, a(k) } (2) 

b(i) = min{b(i1), b(i2), b(i3),⋯⋯, b(il) } (3) 

where a(i) is the intra-cluster dissimilarity, which is the distance from 
sample i to other samples within the cluster to which it belongs. b(i) is 
the minimum inter-cluster dissimilarity, which is the average distance 
from sample i to all points within clusters that do not include it. The 
value of s(i) ranges from − 1 to 1. The silhouette coefficient (s) for the 
clustering result is the mean of the silhouette coefficients for all samples, 
calculated as: 

s =
∑n

i=1S(i)

n
(4) 

Employing the k-means unsupervised method to group samples 
spectrally, the distance metric utilized in this clustering is defined as 
follows: 

d(x, c) = 1 −
xć

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(xxʹ)(cć )

√ (5) 

where x represents the reference spectrum, and c represents the target 
spectrum.

3.3. Specific input features for DOC and POC

We employ multimodal input features by considering various factors 
related to OC sources and environmental conditions. For DOC, the model 
inputs contain spectral bands surface reflectance, variable bands indices 
and environmental predictors. Phytoplankton growth influences varia-
tions in DOC, as phytoplankton release extracellular DOC and generate 
significant amounts of DOC during cell degradation (Zhang et al. 2009). 
So, we also use Chl-a related indices and empirical algorithms to predict 
DOC. Recent study demonstrates that incorporating environmental 
predictors into models significantly improves models’ performance, 
highlighting the crucial role of environmental processes in modeling 
DOC variations in inland waters at larger scales. Harkort and Duan 
(2023) provide a detailed description of the reasons for selecting envi-
ronmental predictive factors. The variable importance of DOC retrieval 
model across different OWTs shows in Fig. 4.

For POC, the model inputs contain spectral bands surface reflectance, 
variable bands indices and constituents correlated to POC. Considering 
of the complex source of POC in the river system can be divided into 
exogenous (sediment and terrestrial loading) and autogenous (mainly 
produced by produced plankton) sources (Marwick et al. 2015). We also 
use plankton and sediment relative bands indices to predict POC (Liu 
et al. 2019). The variable importance of POC retrieval model across 
different OWTs is shown in Fig. 4.

3.4. Model evaluation

We employ four statistical indicators to comprehensively evaluate 
model performance, including R2, Root Mean Squared Error (RMSE), 
Median Symmetric Accuracy (“Error”), and Symmetric Signed Percent-
age Bias (“Bias”). R2 and RMSE represent the proportion of variance and 
statistical error in the overall data that the model can explain, which are 
commonly used in machine learning. “Error” is defined as a symmetric 
percentage error that equally penalizes both over- and under-estimation, 
with lower values indicating better performance and perfect accuracy 
represented by 0 %. “Bias” refers to a percentage bias that also maintains 
symmetry between over- and under-estimation, where values closer to 
zero reflect better performance; positive values indicate over- 
estimation, while negative values indicate under-estimation. 

R2 = 1 −
∑N

i=1

(Xr i − Xm i)
2

(Xr i − Xm)
2 (6) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
(Xr − Xm)

2
√

(7) 

Error = 100 × (e
median

(⃒
⃒
⃒
⃒log10

Xr
Xm

⃒
⃒
⃒
⃒

)

− 1) (8) 

MdLQ = median(log10
Xr

Xm
) (9) 

Bias = 100 × sign(MdLQ) × (e|MdLQ| − 1) (10) 

In Eqs. (6)–(10), Xm represents the in-situ measured data, and Xr 

represents the retrieved data. Although our data is normally distributed 
for DOC, the model can still be affected by extreme values. Both metrics 
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of Error and Bias are zero-centered and symmetric and designed to 
address the widely documented drawbacks of other commonly used 
statistical measures (e.g., RMSE and R2 are asymmetric with respect to 
over-forecasting and under-forecasting, constrained to be positive, and 
not resistant to outliers) (Morley et al. 2018). Therefore, comprehensive 
metrics better reflect the overall performance of the model.

4. Application of Aqua-OC at the basin scale

4.1. Definition of river reaches

We define the boundaries of rivers based on the summary statistics 
version of the Global River Widths from Landsat (GRWL) database 
(Allen and Pavelsky 2018). GRWL utilizes Landsat archives to precisely 
delineate river boundaries, aligning seamlessly with the objectives of 
our study. The division of river reaches is based on a simplified vector 
version of grouping and merging, aiming to maximize the representation 
of dynamic river features. Since some river reaches may not represent 
permanent water bodies throughout the 40-year time series, we exclude 
reaches where the frequency of missing values for a river reach exceeds 
30 % over the four decades time series. We have finalized 451 reaches 
for Mississippi River basin (study area shows in section of 5.3.1). Based 
on buffer zones created by doubling the river width along the reach 
centerline, we use our images pre-processing scheme to extract the 
spectral bands surface reflectance and calculate spectral indices. Then 
we apply the Aqua-OC framework to river reaches to obtain the annual 
average OC.

4.2. Satellite images pre-processing

Landsat archive products courtesy of the USGS provides excellent 
opportunity for scientific research organizations to reconstruct histori-
cal long-term (1984–2023) water quality parameters (WQPs). We use 
Landsat atmospherically corrected tier 1 images through Google Earth 
Engine (GEE). The following processing steps are implemented: 

1) Landsat surface reflectance products have been selected (LANDSAT/ 
LT05/C02/T1_L2, LANDSAT/LE07/C02/T1_L2), where Landsat 5 
and 7 are atmospheric corrected by the Landsat Ecosystem Distur-
bance Adaptive Processing System (LEDAPS) (Schmidt et al. 2013).

2) We exclude the Landsat-8 data to avoid of inconsistency of Landsat 
sensors in a course of four decades timespan (Roy et al. 2016).

3) By utilizing the internal cloud cover metadata field in Landsat, we 
filter images with cloud coverage below 30 %.

4) We exclude low-quality pixels from Landsat Collection-2 using the 
pixel quality_flags assessment bit index. This process identifies and 
removes pixels affected by: ‘cloud’, ‘snow’, ‘cloud shadow’.

5) Water surface extraction used DSWE method developed by the USGS 
to classify water pixels of Landsat images in GEE.

6) Based on the river vector that is reduced to vectors by extracting the 
water surface, we remove small areas such as lake pixels based on 
whether the water area features intersect with GRWL river 
centerlines.

4.3. Model application

We match OWT and specific Aqua-OC algorithm for each river reach. 

Fig. 4. Feature importance in the machine learning algorithms for predicting OC across four OWTs. The indices, formulas, and references of the features are listed 
in Table S4.
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Based on buffer zone created by doubling the river width (provided by 
GRWL database) along the reach centerline, we use our images pre- 
processing scheme to process images data within the buffer zone. To 
match each OWT-specific Aqua-OC algorithm, we determined the OWT 
of the reach based on the spectral angle and then use specific Aqua-OC 
algorithm. Specifically, we match the target spectrum r*(λi) (spectrum 
composed of the average surface reflectance of each band in the buffer 
zone) and reference spectrum rref (λi) (spectrum composed of average 
surface reflectance of each band of three OWTs) to calculate the spectral 
angle. The smallest spectral angle to the rref (λi) is designated as the most 
likely OWT. The spectral angle (α) between r*(λi) and rref (λi) is calcu-
lated as follows: 

α = cos− 1
∑n

i=1
{
r*(λi)rref (λi)

}

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1{r*(λi) }
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1{rref (λi) }
2

√ (11) 

4.4. Analyzing long-term trends

We used the Mann-Kendall non-parametric trend test (version 1.4.3 
of pymannkendall package in Python 3.8) to analyze changes in annual 
OC for each river reach, using α = 0.1 to test for statistical significance. 
Mann-Kendall test is robust to missing values and serial dependence. 
Nevertheless, we are careful to avoid over-interpreting the sparse data 
from the early years of the satellite record. Therefore, we count the 
number of valid observations for each reach over four decades period, 
and the trend test is only applied to reaches with more than 10 valid 
observations. For example, if a reach with more than 10 valid obser-
vations in four decades time series, trend analysis is applied.

5. Result

5.1. Cluster results

Cluster analysis differentiates subsets based on the shape and 
magnitude of surface reflectance, resulting in four optimal clusters. 
These conditions are not unique to specific rivers, lakes, or regions, nor 
are they solely due to differences between freshwater and marine wa-
ters; they reflect average conditions influenced by the optical properties 
of the water column, ultimately depending on the absorption and 

scattering characteristics of in-water constituents, such as phyto-
plankton and non-phytoplankton particles. Fig. 5 displays surface 
reflectance spectra colored by OWT, revealing distinct differences in 
mean surface reflectance spectra for each OWT. Generally, OWT 
reflectance spectra exhibit unique characteristics, with clear variations 
in spectral shape and magnitude of surface reflectance across defined 
OWTs, indicating that the classification scheme effectively captures the 
unique spectral traits of global in-situ measurements. Fig. 6 shows the 
distribution of optical constituent components, DOC and POC, for each 
OWT group. The highest median DOC concentration of 3.79 mg/L is 
found in OWT 2, while OWT 3 has the highest concentration of POC of 
1.8 mg/L. The median value for each constituent further confirms that 
OWTs are not derived from a simple OC concentration threshold but 
instead result from a mixed combination of each optical constituent.

5.2. Model performance

We test the performance of machine learning algorithms to estimate 
POC and DOC concentrations in different OWT groups. For DOC, Algo-
rithm performance is highly variable across the four tested models. For 
OWT 1 (Fig. 7), DNN shows excellent ability than other methods with an 
R2 of 0.64, RMSE of 2.32 mg/L, Bias of 1.72 %, and Error of 9.78 %. 
Although inferior to DNN, XGBoost also shows the good performance 
with an R2 of 0.41, RMSE of 2.96 mg/L, Bias of 3.04 %, and Error of 
11.19 %. In both the DNN and XGBoost models, some deviation values 
near the measured concentrations are less than 1 mg/L. However, these 
low deviations are consistent across all four methods, indicating that the 
issue may be related to the quality of the in-situ data rather than errors 
within the machine learning methods. For OWT 2, XGBoost outperforms 
other methods with R2 of 0.65, RMSE of 3.96 mg/L, Bias of 4.68 %, and 
Error of 14.51 %. However, XGBoost exhibits a slight over-estimation of 
lower DOC values, particularly those below 1 mg/L. For OWT 3, 
XGBoost also outperforms other methods with R2 of 0.70, RMSE of 2.05 
mg/L, Bias of − 3.15 %, and Error of 16.55 %. For OWT 4, RF effectively 
estimates DOC, achieving R2 of 0.62, RMSE of 2.41 mg/L, Bias of 3.77 %, 
and Error of 12.76 %. The 10-fold cross-validation confirms the 
robustness of models across different OWTs (Table S2). The model 
performance in independent set as shown in Fig. S1.

In evaluating the model performance of POC in OWT 1 (Fig. 8), 
XGBoost stand out among the methods, achieving an R2 of 0.70, RMSE of 

Fig. 5. Normalized surface reflectance data of OC matchups sorted into the four clusters from the k-means cluster analysis; grey lines denote mean reflectance.
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1.26 mg/L, Bias of 10.83 %, and Error of 23.87 %. In OWT 2, RF dem-
onstrates superior performance compared to other methods with an R2 

of 0.77, RMSE of 0.84 mg/L, Bias of − 2.79 %, and Error of 21.29 %. 
Moving on to OWT 3, XGBoost performs well over the other methods 
with an R2 of 0.72, RMSE of 3.06 mg/L, Bias of 10.46 %, and Error of 
22.93 %. In the case of OWT 4, RF effectively estimates POC with an R2 

of 0.70, RMSE of 2.08 mg/L, Bias of 5.83 %, and Error of 18.87 %. 
Overall, all models struggle to predict lower POC concentrations (below 
1 mg/L) across all OWTs, although our Aqua-OC retrieval framework 
demonstrates comparatively better performance. The Aqua-OC frame-
work displays a tighter clustering of data points along the identity line, 
with higher POC concentration values closely aligning with the identity 
line except for a few points. The 10-fold cross-validation confirms the 
robustness of the models across different OWTs (Table S2). The model 
performance in independent set as shown in Fig. S2.

5.3. Aqua-OC application to large-scale river OC estimates

5.3.1. Study area
The Mississippi River Basin (MRB) originates at Lake Itasca in 

northwestern Minnesota, USA, meandering through the south-central 
region of North America. It traverses 31 states in the United States 
and two provinces in Canada before eventually flowing into the Gulf of 
Mexico (Fig. 9). Covering a drainage area of 3.24 million km2, it ranks as 
the third-largest drainage basin in the world. The southeastern region of 
the MRB has a subtropical monsoon climate, characterized by hot, rainy 
summers and mild, drier winters. In contrast, the rest of the basin ex-
periences a temperate continental climate, with less precipitation and 
greater temperature variations between winter and summer (Yin et al. 
2023). Over the past few decades, the MRB has been significantly 
impacted by rapid human activities, which have substantially altered 
the magnitude, annual variations, and decadal trends of OC concentra-
tion and flux.

5.3.2. Spatial-temporal variations of OC
Large spatial variations in river OC concentration are found in the 

MRB (Fig. 10). In general, the mean DOC concentration in MRB is 5.4 ±

2.2 mg/L (mean ±1 standard deviation, same hereafter), and DOC 
concentrations are relatively high in the central and northern regions 
and low in the northwestern and southern regions. High DOC concen-
tration distribution in the middle MRB is associated with the expanded 
cropland, which exports a large amount of DOC through cultivation- 
intensified degradation of the organic matter (Ren et al. 2016). The 
reforestation in the upper and lower Ohio basins is believed to have 
contributed to an increase in DOC export due to higher DOC leaching in 
forest land compared to other systems (Delprat et al. 1997; Pandey and 
Pandey 2013). In contrast, the mean POC concentration in MRB is 2.2 ±
1.2 mg/L, and POC concentration is relatively high in the central and 
southern area and low in the northern and eastern part of the basin. The 
spatial variability of POC consist with the spatial distribution of SSC 
provided by Gardner et al. (2023).

The long-term (1984–2023) trend of river DOC and POC in MRB 
shows significant differences (Fig. 10). In marked contrast to the sig-
nificant increasing trend of DOC observed in approximately 24 % of 
river reaches (108 out of 451, p < 0.1), POC shows widespread signifi-
cant decreases, with around 43 % of river reaches (194 out of 451, p <
0.1) exhibiting the declining trend. Previous studies contend that on a 
decadal scale over the MRB, the changes in historical OC concentration 
have been mainly due to direct anthropogenic drivers, i.e., land use 
change, intensive land management practices, and massive damming 
(Raymond and Cole 2003; Raymond et al. 2008). Human activities, such 
as fertilization, irrigation, embanking, and tillage, are the dominant 
factor contributing to the long-term increase in river DOC concentration 
(Raymond et al. 2008; Shen et al. 2021). In contrast, the construction of 
dams appears to be the dominant driver behind the widespread de-
creases observed in POC.

Overall, Aqua-OC demonstrates exceptional capability in mapping 
long-term series and reach-scale OC across large basins. Its ability to 
capture the spatio-temporal variations of river network OC provides 
invaluable insights into the dynamic processes governing river OC dy-
namics. This deeper understanding of river OC patterns facilitates a 
more comprehensive analysis of the underlying drivers and ecological 
implications of these variations.

Fig. 6. In-situ OC values distribution for OWT groups. Within the violins, white lines show the median value, thick lines the interquartile range, and whiskers extend 
to a maximum of 1.5 times the interquartile range.
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6. Discussion

6.1. The first practice for blueprint of RIOS

A consortium of hydrologists and biogeochemists convened at the 
University of Bristol on June 14–15, 2023, to explore the potential 
structure of a global RIOS (Battin et al. 2023; Dean and Battin 2024). 
The researchers established overarching, core science, and community 
objectives, concluding with the importance of a RIOS for quantifying 
and predicting rivers’ contributions to the global carbon cycle. RIOS will 
integrate data from river sensor networks, satellite imagery, and math-
ematical models to estimate carbon dynamics associated with river 
ecosystem metabolism. Within the RIOS blueprint, satellite technology 
serves as a cornerstone for providing long-term historical data to inform 
the nested organization of river OC dynamics and their spatio-temporal 
heterogeneity. Although satellites provide opportunities and success-
fully apply in quantifying the river network topology, surface and 
inundation area, water storage, discharge, and suspended sediments 
(Allen and Pavelsky 2018; Dethier et al. 2022; Frasson et al. 2021; Lin 
et al. 2021; Yamazaki et al. 2019), satellite imagery still leaves sub-
stantial data gaps in ecosystem processes and carbon biogeochemistry, 

especially in river OC dynamics. To our best knowledge, the Aqua-OC 
framework is the first practice of RIOS, aiming to provide a living 
observational network to determine long-term trends in river carbon 
dynamics. Furthermore, we provide an opportunity to enrich the global 
river OC data and so that the research community could conduct further 
analysis about carbon transformations and fluxes across the land–ocean 
continuum and understand the processes driving by anthropogenic and 
climatic disturbances.

6.2. Aqua-OC empowers understanding the role of rivers in global carbon 
cycling

Leveraging OWT strategy and a data-driven machine learning 
retrieval framework, Aqua-OC offers high accuracy, global portability, 
and the ability to reconstruct long-term and reach-scale OC dynamics. 
These advantages position Aqua-OC to make significant contributions to 
assessing the role of rivers in the global carbon cycle. Firstly, the accu-
racy and portability of OC retrieval are demonstrably reliable. By 
assigning the best performing algorithm (i.e., lowest RMSE, Error and 
Bias) to a particular water type, the dynamic switching strategy (that 
means by assigning the best performing algorithm to a particular OWT) 

Fig. 7. Scatter plots show the performance of the four machine learning algorithms in retrieving DOC across four OWTs for testing set. The red box represents the 
best-performing model in different OWT. The contour lines correspond with density estimates. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

S. Tian et al.                                                                                                                                                                                                                                     



ISPRS Journal of Photogrammetry and Remote Sensing 221 (2025) 109–123

118

is the core of the Aqua-OC framework. The dynamic retrieval framework 
is based on global covered dataset and can capture the OC features 
across different OWT, thus improving the retrieval accuracy (Fig. 11). 
For DOC, the overall R2, RMSE, Bias and Error have improved for the 
dynamic switching framework, from 0.37 to 0.60, 3.16–3.96 mg/L, 2.93 
%–6.44 %, and 10.11 %–16.32 % improve to 0.68, 2.88 mg/L, 2.63 %, 
and 12.52 %. For POC, the overall R2, RMSE, Error and Bias have 
improved from 0.09 to 0.21, 6.44–7.44 mg/L, 3.40 %–11.71 %, and 
20.97 %–27.87 % to 0.76, 1.76 mg/L, 6.31 %, and 21.36 %. The 
improvement in model accuracy is attributed to the classification of 
OWTs and the reliability of input parameters. Different OWTs represent 
unique water optical properties, characterizing the composition and 
concentration range of OC. In addition to spectral bands surface 
reflectance, we have incorporated numerous band indices and empirical 
algorithms as input parameters to comprehensively consider variables 
affecting OC variations. For instance, we have included POC-related 
internal and external source parameters (SSC and Chl-a) and utilized 
environmental variables to predict DOC. Furthermore, the integration of 
a massive OC database (over 400,000 measurements) enables the full 
potential of machine learning.

Secondly, the Aqua-OC framework provides significant advantages 

to the river carbon research community, including long-term series 
dating back to 1984, extensive global coverage, and spatially explicit 
estimations at the river reach scale, enabling multifaceted assessments 
of rivers’ role in the global carbon cycle. The field of river carbon 
research is rapidly evolving and gaining momentum (Karlsson 2024; 
McClelland et al. 2016; Regnier et al. 2013; Repasch et al. 2021; Spencer 
and Raymond 2024), yet numerous gaps remain to be filled, including 
(i) estimating the carbon flux from terrestrial and biospheric sources 
into river networks and its subsequent delivery to the ocean; (ii) un-
derstanding the transport processes of OC in terrestrial river networks 
disturbed by anthropogenic and climatic factors; (iii) bridging obser-
vations from local to regional to global scales; and (iv) extending tem-
poral observations from event to decadal scales (Battin et al. 2023; Bauer 
et al. 2013; Bianchi et al. 2024; Dean and Battin 2024; Regnier et al. 
2022). Aqua-OC possesses the potential to address these objectives. For 
instance, by enabling high-precision mapping of OC in major rivers 
worldwide, Aqua-OC can provide insights into the global OC flux 
transported from rivers to the ocean. Additionally, its ability to recon-
struct OC at the reach-scale over four decades enables long-term analysis 
of OC transport processes and dynamics in terrestrial river networks, 
shedding light on the underlying drivers of these changes. Overall, 

Fig. 8. Scatter plots show the performance of the four machine learning algorithms in retrieving POC across four OWTs for testing set. The red box represents the 
best-performing model in different OWT. The contour lines correspond with density estimates. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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Fig. 9. Sketch map of the Mississippi River basin. Definition of river order following the Strahler ordering system. The land cover data from the MODIS Land Cover 
Type Product (https://lpdaac.usgs.gov/products/mcd12q1v006/). Dam data are sourced from the Global Reservoir and Dam Database (GRanD, version 1.3) (Lehner 
et al. 2011).

Fig. 10. Map of trends and concentration in mean annual OC from 1984 to 2018 showing the percentage of river reaches affected by decreasing, increasing, or no 
significant trend.
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Aqua-OC represents a significant advancement in quantifying river OC, 
enhancing our ability to observe and predict changes in this crucial 
component of rivers in the global carbon cycle.

6.3. Model uncertainty

Land-based atmospheric correction strategy and the errors of cloud 
masking algorithms may be the limitations of Aqua-OC. While many 
aquatic-based atmospheric correction algorithms have been developed 
to address the challenges of accurately extracting water-leaving reflec-
tance in aquatic remote sensing, these methods are not universal. Their 
effectiveness can vary significantly based on different atmospheric 
processors and specific OWTs, which can greatly influence the predic-
tion outcomes of water quality mapping (Pahlevan et al. 2021). Machine 
learning models can yield improved predictions even without atmo-
spheric correction by circumventing the secondary errors that arise from 
neglecting the suitable application range of particular atmospheric 
correction algorithms (Medina-Lopez 2020; Toming et al. 2020). 
Furthermore, the normal atmospheric correction algorithm for Landsat 
satellites performs as well as aquatic-based correction algorithms (e.g., 
ACOLITE, SeaDAS) (Kuhn et al. 2019), and have been successfully 
applied in aquatic remote sensing over regional to global extents using 
data-driven approaches (Dethier et al. 2022; Dethier et al. 2023; Gard-
ner et al. 2023; Li et al. 2024). A small fraction of low-quality pixels is 
affected by the bottom reflectance of optically shallow water and thin 
clouds are not representative of the true surface reflectance of river 
reach. For example, according to map the reach-scale band surface 
reflectance, the high reflectance pixels increase towards the shorelines 
of the river (Fig. 12a). The increased uncertainties are primarily 
attributed to the mixed pixels or bottom reflectance of optically shallow 
water. Additionally, low-quality pixels that are not identified by the 
cloud masking algorithm may exhibit high reflectance values that differ 
from other river pixels (Fig. 12a). We extract the median surface 
reflectance to minimize the impact of uncertain outliers. The results 
indicate that our median extraction strategy more accurately represents 

the true reflectance characteristics of river reaches, which closely aligns 
with the mean calculated after removing outliers of low-quality pixels 
(Fig. 12b, Table S3).

The other source of uncertainty arises from the in-situ data. Our in-
tegrated OC dataset (GRQA and AquaSat) combines existing public 
datasets, leading to considerable variability in the techniques, methods, 
and interpretations of OC measurements. Despite our efforts to imple-
ment strict quality controls for matching OC data, discrepancies in 
sampling techniques, analytical inconsistencies, and their corresponding 
calibrations remain unavoidable. We find the range of predicted values 
in the low-value range is relatively dispersed, a common phenomenon 
for modeling that use public datasets (Dethier et al. 2020; Gardner et al. 
2023; Harkort and Duan 2023; Maciel et al. 2023). However, the extent 
to which these differences impact algorithm development and validation 
remains unclear. Given the large sample size (over 400,000 samples) 
used in this research and the additional quality controls implemented, 
minor variations in sampling methods are unlikely to significantly affect 
model development and evaluation.

7. Conclusions

This study introduces the Aquatic-Organic Carbon (Aqua-OC), a 
novel and dynamic OC retrieval framework that leverages state-of-the- 
art machine learning techniques and an optical water type (OWT) 
classification strategy. We further integrate a comprehensive global 
dataset of more than 400,000 OC observations and demonstrate the 
ability of Aqua-OC framework in estimating long-term series and reach- 
scale OC across various OWTs. The results show that Aqua-OC is a 
reliable tool for estimating DOC (R2 = 0.68, RMSE = 2.88 mg/L, Bias =
2.63 %, Error = 12.52 %) and POC (R2 = 0.76, RMSE = 1.76 mg/L, Bias 
= 6.31 %, Error = 21.36 %). Furthermore, we apply the Aqua-OC 
framework in the Mississippi River Basin and find the substantial in-
creases in DOC (24 %; 108 out of 451 river reaches) and declines in POC 
(43 %; 194 out of 451 river reaches) over 1984–2023 in response to 
agriculture expansion and damming. The observed patterns in the 

Fig. 11. Scatter plots show the performance of the Aqua-OC compared with other machine learning algorithms. The contour lines correspond with density estimates.
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Mississippi River Basin align with previous findings, indicating that 
Aqua-OC provides reasonable OC estimates. While locally tuned models 
may offer higher accuracy, Aqua-OC addresses key challenges in river 
remote sensing and has the potential to reveal large-scale trends in river 
OC over extended periods, seasons, and at reach-scale. Overall, this 
study marks the first application of a global River Observation System 
(RIOS) and has great potential to advance river carbon observation over 
contrasting spatial scales and deepen our understanding of rivers’ role in 
the global carbon cycle.
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