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Abstract Estimating long-term site velocities from Global Navigation Satellite System (GNSS)-derived
daily displacement time series is vital for studying secular tectonic motions and establishing regional and global
geodetic reference frames. However, this estimation is complicated by displacements caused by earthquakes,
equipment changes, hydraulic head changes, and other sources, which introduce change points in GNSS time
series. This study introduces a two-stage hybrid framework for automated change-point detection in GNSS time
series. The framework integrates (a) analytical methods, including a sliding-window algorithm for instant
change-point detection and a cubic polynomial fit for transitional change-point detection and (b) an artificial
intelligence (AI) model, ChangePointCNN-GNSS, which evaluates the suitability of candidate change points
for site velocity estimation and iteratively optimizes analytical parameters. Unlike prior data-driven approaches,
our framework leverages an image-driven method, employing a convolutional neural network (CNN) to visually
assess and select the most suitable change-point configuration for reliable site velocity estimation. Site
velocities are computed from the longest change-point-free segment (minimum 4 years), processed
independently for each station and direction. This integrated approach ensures robust site velocity estimation
across large GNSS networks. The CNN is trained using approximately 6,000 time series plots with marked
change points. Each plot is labeled as “good” if the detected change points are suitable for reliable site velocity
estimation or “bad” if unsuitable. This study delivers long-term site velocities (IGS20) for approximately 14,600
permanent GNSS stations worldwide, with a 95% confidence interval below 1 mm/year, offering a foundational
data set for researchers in geodesy, tectonophysics, and hazard mitigation.

Plain Language Summary Global Navigation Satellite System (GNSS) stations monitor Earth's
surface displacements to estimate long-term site velocities, from which secular tectonic motions can be derived.
These secular velocities are fundamental for studying plate movements and assessing geological hazards.
However, displacements from earthquakes, equipment changes, or other factors introduce change points that
disrupt reliable secular velocity estimates. Conventionally, change points are detected using analytical methods
that require manual tuning of multiple parameters—a slow, impractical process that limits the use of vast global
GNSS data. We developed a two-stage solution: first employing analytical methods to scan for potential change
points, then using our artificial intelligence (Al) tool to assess their suitability for reliable velocity estimation—
automatically fine-tuning parameters without human intervention. Applied to decades of GNSS records, this
method delivers trustworthy site velocities with a 95% confidence interval under 1 mm/year. By combining
classic math with a modern, image-based convolutional neural network (CNN), our method simplifies and
improves the analysis of large GNSS data sets, offering reliable site velocities where conventional data-driven
methods often fall short. All tools and data are shared, enabling others to apply and extend this innovation across
Earth science and related fields.

1. Introduction

Displacement time series derived from Global Navigation Satellite System (GNSS) observations provide
essential data for estimating long-term site velocities, which are commonly interpreted as secular tectonic motion
trends in tectonically stable regions. These velocities are fundamental for the periodic updates of global geodetic
reference frames (e.g., Altamimi et al., 2023), the development of regional crustal velocity models (e.g., Snay
et al., 2025), and the establishment of regional and local-scale reference frames (e.g., Agudelo et al., 2020; Bao
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et al., 2021; Blewitt et al., 2013; Wang et al., 2018). Since the mid-1990s, over 20,000 permanent GNSS stations
worldwide have generated long-term records. GNSS-derived displacement time series are openly accessible
through archives like UNAVCO (Herring et al., 2016) and the Nevada Geodetic Laboratory (Blewitt et al., 2018),
enabling detailed studies of crustal motion and the development of numerous regional reference frames.

Site velocities are typically derived by applying linear regression to displacement time series to determine stable,
secular trends. However, change points, both instant and transitional, frequently disrupt long-term GNSS time
series due to various factors, such as earthquakes, equipment changes, groundwater level fluctuations, severe
droughts, and undocumented events, complicating accurate site velocity estimation. Robust change-point
detection is thus essential for the reliable analysis of large-scale GNSS networks (e.g., Gazeaux et al., 2013;
Griffiths & Ray, 2016; Heflin et al., 2020).

Traditional methods for calculating site velocities from large GNSS data sets, such as the Median Interannual
Difference Adjusted for Skewness (MIDAS) (Blewitt et al., 2016) and trajectory modeling (Bedford &
Bevis, 2018; Bevis & Brown, 2014), face challenges with large global data sets involving frequent steps and gaps.
MIDAS estimates site velocity by calculating linear trends from 1-year segments of the time series and selecting
the median trend, but these segments may include complex earthquake signals or other natural and anthropogenic
events, potentially biasing velocity estimates, particularly in tectonically active regions.

Catalog-driven physical trajectory models fit parametric functions, including linear trends, seasonal signals, and
Heaviside step functions for known events like earthquakes, to the entire time series (Bevis & Brown, 2014).
These models rely on prior knowledge of disruptive events from external sources, such as earthquake catalogs,
GNSS site logs (documenting equipment changes and maintenance), and software update histories, to manually
define change points. Data-driven trajectory modeling, such as greedy automatic signal decomposition, identifies
trends and change points without predefined catalogs, offering flexibility for complex time series with unknown
disruptions (Bedford & Bevis, 2018). However, for processing large global data sets, data-driven approaches face
challenges, including high computational complexity due to iterative model fitting, sensitivity to noise and
outliers across diverse stations, lack of geophysical interpretability for detected change points, parameter tuning
difficulties for heterogeneous time series, and limited scalability in fully automated processing of large data sets.

To overcome the limitations of conventional methods, we propose a hybrid framework that integrates analytical
techniques with a convolutional neural network (CNN), ChangePointCNN-GNSS. The process begins by using
an analytical method to identify potential change points in a GNSS time series; however, the number of change
points is highly sensitive to predefined threshold parameters. Our hybrid approach iteratively tests a range of these
thresholds, generating a unique candidate set of change points for each one. The CNN model then evaluates and
scores the suitability of each candidate set for long-term velocity estimation. This score is used to refine the
analytical parameters, creating an optimization loop that converges on the most statistically robust change-point
configuration. Finally, the longest change-point-free segment (minimum of 4 years) is selected from the optimal
configuration, and a linear regression is applied to estimate the final site velocity. This integrated method en-
hances both the precision and automation of velocity estimation.

2. Data and Methods
2.1. Data

As of 2025, the NGL maintains a comprehensive data set of GNSS-derived daily displacement time series from
over 20,000 GNSS stations worldwide (Blewitt et al., 2018). Among these, approximately 15,000 stations offer
continuous records spanning at least 4 years, with a data availability threshold exceeding 70%. This ensures
sufficient temporal and spatial coverage for estimating long-term site velocities directly from GNSS data, which
can represent secular tectonic motion in stable regions.

In this study, we utilize the GNSS time series provided by the NGL to train the ChangePointCNN-GNSS model.
The training data set comprises daily displacement time series from approximately 2,000 stations. The
displacement time series are referenced to the International GNSS Service (IGS) reference frames. The trained
model is then applied to estimate site velocities at approximately 15,000 stations by identifying the longest
change-point-free segment in each station's time series for each directional component (NS, north-south; EW,
east-west; and UD, upper-down).

WANG ET AL.

20of 15

85UB0]7 SUOLILLIOD @A e840 3|edl|dde ayy Aq peusencb ae sejoe VO ‘@SN Jo Sajni Joj Afeiq18ulUO A8]IA UO (SUORIPUOD-pUB-SWLB)LI0D" A3 [IM"Aeiq 1 BuUO//SANY) SUORIPUOD pUe SWid | 8U 88S *[G20g/TT/0T] uo AiqiTauliuo felim ‘ Buep NvVNOOND Aq 0TE000HCSZ0Z/620T OT/10p/Lod" A8 1M Areiq putjuosgndnBe//sdny wo. papeojumoq ‘v ‘SZ0Z ‘0T2SE66C



A~y
. . .
M\I JGR: Machine Learning and Computation 10.1029/2025JH000910
AND SPACE SCIENCES
Detrended J959-NEU: Change-Point Detection J959_1GS20_neu_cm
T T T T
! « Detrended NS displacement [ 3] * NSdisplacement
2.0 ! Segment for calculating velocity ' == = \elocity: 3.6 mm/yr
: ——- Detected change-points : : 2
1.519 i
- i i 1
§ 104 1 gl S 4
) H ]
9 o, 2
054 | -1
] N d
_34
_05 T T T T T T T T T
04 51
-5 01
€ -10- T 73 /
) )
g -151 | g 109
1
—204 : * Detrended EW displacement -151
: Segment for calculating velocity + EW displacement
—254 H —-—- Detected change-points —201 N == = Velocity: 0.2 mm/yr
1 T T T T T T T T
34 4
+ UD displacement
21 S =" Velocity: 6.8 mm/yr
14
£ % E 04
< 2
a ~11 ¢ o
=) % =}
-24 1 1 -2
34 Detrended UD displacement
Segment for calculating velocity 4 ! 3
—4 4 --- Detected change-points o
1 1 1 1
T T T T T T T T T T T T T T T T
2010 2012 2014 2016 2018 2020 2022 2024 2010 2012 2014 2016 2018 2020 2022 2024
Decimal Year Decimal Year

Figure 1. GNSS-derived daily displacement time series (referred to IGS20) plots at station J959 (Japan), illustrating instant and transitional change points. Instant change
points bound abrupt displacements (e.g., coseismic offsets), while transitional change points define gradual displacements (e.g., postseismic deformation). The longest
change-point-free segment (minimum 4 years, highlighted in red) is used for linear regression to estimate site velocity, capturing the secular crustal motion trend in this

region.

2.2. Analytical Methods for Detecting Change Points

Displacement time series derived from GNSS often exhibit two distinct classes of anomalies: abrupt displace-
ments (referred to as steps) bounded by instant change points and gradual displacements bounded by transitional
change points, reflecting divergent geophysical or anthropogenic origins. Instant change points mark the start and
end of abrupt displacements, characterized by near-instantaneous positional offsets, typically arising from
discrete events such as equipment changes (e.g., antenna or receiver replacements, antenna mount adjustments),
coseismic displacements, or sudden environmental perturbations. These change points are identified by sharp,
discontinuous deviations exceeding background noise within a short period, often at a single sampling interval.

Transitional change points, in contrast, define the boundaries of gradual, nonlinear displacements evolving over
weeks to years, often linked to postseismic deformation, pre- and postvolcano-eruption surface deformation,
tectonic transient, slow-slip events, or anthropogenic processes, such as groundwater withdrawal-induced land
subsidence. Prolonged drought events can also induce gradual displacements in GNSS time series, particularly in
the vertical component, as shown by Welch et al. (2024). These displacements often follow logarithmic or
exponential decay patterns, necessitating specialized detection techniques to distinguish them from secular tec-
tonic trends. Figure 1 illustrates instant and transitional change points observed at a representative long-term
GNSS station in an earthquake-prone region, with change-point-free segments highlighted in red, used for
linear regression to estimate site velocities that capture secular crustal block motions.

Two common approaches are used to detect change points in time series. The first is the sliding-window method,
which uses adjustable windows to scan the data for abrupt steps. The second is the rupture method (Truong
et al., 2020), which applies statistical optimization to the entire time series to robustly identify change points. The
sliding-window method scans detrended data by comparing mean shifts within fixed windows, tunable via
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window size and threshold parameters to detect instant change points. It often misses slow, gradual displacements
that span years, limiting its effectiveness for complex GNSS time series in earthquake-prone regions. In contrast,
the rupture method, implemented via the ruptures library, uses dynamic programming to minimize a cost function
—typically a radial basis function (rbf) kernel—across segments, offering the potential to capture both abrupt and
gradual displacements by modeling nuanced changes. Yet, its conventional form is computationally intensive,
making it impractical for processing decade-long GNSS time series. The rpt.KernelCPD variant, with linear
complexity penalties (e.g., L1 norm), improves efficiency but sacrifices precision, frequently producing spurious
change points or overlooking gradual transitions due to its reliance on simplified kernel assumptions.

To address these challenges, we implement a two-stage analytical approach, utilizing sliding-window analysis to
detect instant change points and curvature-based analysis to identify transitional change points in GNSS time
series. For preprocessing, we employ a robust outlier removal method that first excludes extreme displacements
exceeding a 5-m absolute threshold, then detrends the time series, and iteratively filters outliers using a 360-day
rolling window with a 2.5-sigma threshold over three iterations. These parameter values were optimized through
extensive empirical testing on diverse GNSS data sets to achieve a primary objective: maximizing the removal of
noise and outliers while rigorously preserving the integrity of the geophysical signal. This careful balancing act
significantly enhances the visibility of both abrupt and gradual change points for subsequent analysis.

Instant change-point detection is performed on the detrended time series. These change points are identified using
a sliding-window method that compares mean shifts between adjacent 30-day windows. To reduce false de-
tections caused by noise, short-term environmental variations, or overly sensitive thresholds, a minimum sepa-
ration of 30 days is enforced between consecutive change points. The threshold controlling the magnitude of
detected abrupt steps is iteratively selected from a predefined set of candidate values during the detection process.
In our implementation for global GNSS time series processing, the threshold list used for the horizontal com-
ponents is (0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.7, 1.0, 1.4, 2.0, 10.0, 20.0), while the vertical component uses (0.5, 0.6,
0.7,0.8,1.0,1.2,1.4,1.8,2.5, 10.0, 20.0, 30.0). The threshold values share the same unit as the displacement time
series, which is typically expressed in centimeters.

To minimize the risk of undetected change points within large data gaps biasing site velocity estimates, we
systematically add change points at the start and end of all gaps exceeding 1 year, since these gaps often stem from
equipment replacements or antenna mount adjustments—events that typically introduce physical steps in the time
series.

Transitional change-point detection targets the longest contiguous segment (>4 years) previously identified as
free of instant change points during the initial sliding-window analysis. Within this segment, we first remove the
linear trend. To detect the nonlinear signatures of gradual transitions, we then apply a weighted cubic polynomial
fit. This model was selected after testing various approaches, including quadratic (second-order) fitting, splines,
and higher-order polynomials. A cubic polynomial effectively models the curved transitions in displacement time
series, providing a better fit than a quadratic function while avoiding the overfitting risks associated with more
complex models like splines or higher-order polynomials. The transitional change point corresponds to a turning
point in the detrended displacement time series. This is identified by finding where the first derivative (velocity)
of the fitted cubic function equals zero. A weighted least-squares approach is beneficial because the timing of a
transitional change often occurs in the earlier or later portions of the time series segment, rather than near the
middle. The complete algorithm is implemented in the provided Python code to facilitate replication. Figure 2
illustrates typical examples of transitional change points detected by this cubic-fitting approach.

We assess whether a cubic model provides a better fit than a linear model by comparing their mean squared errors
(MSE). If the absolute value of the MSE improvement ratio—calculated as the difference between the linear and
cubic MSE, divided by the linear MSE—exceeds an empirically derived threshold of 0.2, the cubic model is
adopted to identify potential transitional change points. This threshold was calibrated through extensive testing on
a large and diverse set of GNSS time series to effectively distinguish nonlinear motion from linear noise. It serves
as an initial, lower-bound filter; candidate segments that pass this threshold are then subjected to additional
criteria to confirm the presence of a statistically significant transitional change point. Turning points are then
identified by solving the derivative of the cubic polynomial. The amplitude of each turning point is quantified as
its deviation from a baseline, defined as the mean value of the segment. If this amplitude exceeds a predefined
threshold, the turning point is marked as a transitional change point. In our iterative program, these amplitude
thresholds serve as key control parameters for transitional change-point detection. For the horizontal components,
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Figure 2. Detrended GNSS time series for three stations: G007 (NS component, Japan), SHUL (EW component, Taiwan), and SHWA (EW component, Taiwan),
arranged from left to right. These examples illustrate the detection of transitional change points. For each plot, the longest instant-change-point-free segment, initially
identified using the sliding-window method, is fitted with a cubic polynomial. The point of maximum curvature, derived from the first derivative of the cubic fit, is

marked as the transitional change point.

candidate thresholds of 0.4, 0.6, and 1.0 (in data units) are used; for the vertical component, thresholds of 0.5, 0.8,
and 1.2 are applied.

2.3. Estimation of Site Velocity and Its Uncertainty

Determining optimal thresholds for change point detection is a complex calibration problem, as requirements vary
significantly between stations and even between components at a single site, making manual tuning impractical
for large-scale data sets. To automate this process, we developed an Al-driven framework that iteratively tests
each candidate configuration of thresholds from a predefined pool—established for detecting instant and, where
necessary, transitional change points, as described in the previous section. For each configuration, the algorithm
generates a time series plot with all detected change points clearly marked. A CNN model then evaluates the
suitability of each plot for reliable velocity estimation and assigns a corresponding probability score.

The iterative process is designed for computational efficiency: if any configuration achieves a high confidence
score of 0.85 or above, the iteration stops early and that configuration is selected. If no configuration meets this
score, the process exhaustively tests all candidates and selects the one with the highest score. The final selected
configuration is used to identify the longest change-point-free segment.

In our method, site velocities are estimated using linear regression applied to the longest change-point-free
segment, provided it spans at least 4 years. This minimum 4-year duration is a critical criterion, ensuring both
statistical reliability and geophysical relevance of the velocity estimates. First, the empirical analysis of three-
component displacement time series from approximately 9,700 global GNSS stations demonstrates that the
95% confidence interval (95% CI) of the linear trends decreases exponentially with the duration of continuous
observations (Figure 3) (Cornelison & Wang, 2023; Wang, 2022). The 95% CI is widely used as a measure of
uncertainty for GNSS-derived site velocities. Typically, horizontal velocities achieve about 1 mm/year uncer-
tainty (95% CI) with 2.5 years of uninterrupted data, while vertical velocities require about 4 years to reach the
same level of uncertainty. Extending the observation length beyond 7 years further reduces uncertainties below
0.5 mm/year across all components. In general, beyond about 4 years, additional data yield only marginal
reduction in velocity uncertainty, suggesting a practical limit to accuracy gains. Based on this, we impose a
minimum 4-year threshold for change-point-free segments, ensuring a 95% CI of below 1 mm/year for the
estimated site velocity. This precision threshold is a commonly adopted standard in geodetic studies for resolving
secular tectonic signals and longer-term deformation processes.

Second, step correction is deliberately avoided in large-scale analyses. Equipment-related abrupt steps (e.g.,
antenna changes) are often accounted for during the processing calculating daily positions from GNSS raw data,
Receiver Independent Exchange Format (RINEX) files, if these changes are recorded in the site log of the station.
However, undocumented equipment changes or environmental perturbations can cause complex steps in GNSS
time series. Correcting these steps manually for individual time series, though feasible in certain cases (e.g.,
Wang, 2023; Wang et al., 2022), could introduce subjective errors that amplify velocity uncertainties. More
critically, automated step correction across vast GNSS data sets is computationally prohibitive and error-prone
due to station-specific variability in steps and noise characteristics. By favoring change-point-free segments
over step-corrected data, our framework avoids these challenges while still achieving reliable velocity estimates.
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Empirical Uncertainty Estimation for
GNSS-Derived Site Velocities (Wang 2022)
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Figure 3. Curves illustrating empirical formulas that model the 95%
confidence interval (95% CI) for horizontal and vertical site velocities
derived from GNSS daily displacement time series. The empirical formulas
used to generate these curves are adapted from Wang (2022).

3. Methodology
3.1. Training Data Set

The CNN model is trained on over 6,000 labeled displacement time series
plots with instant and transitional change points marked, classified as “good”
(suitable for site velocity estimation) or “bad” (unsuitable for site velocity
estimation due to poor change-point configurations). All training plots are
prepared with identical sizes, using the same font for text and the same colors
for time series and the marked change points. Figure 4 shows two example
training plots: one labeled as “good” and the other as “bad.” The training data
set is primarily sourced from regions where the authors conducted extensive
studies, including California (Wang et al., 2007), Alaska (Wang et al., 2015),
the Caribbean (e.g., Wang et al., 2019), the Gulf of Mexico (e.g., Wang
et al., 2020), Japan, and China (Wang & Bao, 2022).

3.2. Training Method

We trained our CNN using the VGG16 architecture, originally developed and
pretrained on the ImageNet data set (Deng et al., 2009) by the Visual Ge-
ometry Group (VGG) at the University of Oxford (Simonyan & Zisser-
man, 2015). VGG16 consists of 16 weight layers—13 convolutional layers
and 3 fully connected layers, employing small 3 X 3 filters to extract hier-
archical visual features efficiently. In this study, we utilized the VGG16
model implementation provided by the TensorFlow software package (Abadi
et al., 2016), which includes pretrained weights for ImageNet and an acces-

sible interface for transfer learning in deep learning applications. Renowned for its powerful performance in
image recognition tasks, VGG16 excels at identifying subtle visual patterns, making it an ideal foundation for our
change-point-detection assessment model via transfer learning. This approach leverages VGG16's robust feature

extraction capabilities, minimizing the computational resources and training data needed for high accuracy.

We adopted a two-phase training strategy to optimize performance for binary classification of GNSS change-
point-detection plots (“good” vs. “bad”). In Phase 1, we froze the VGG16 convolutional base and appended
custom dense layers: a flatten layer to linearize the convolutional output, followed by two fully connected layers
(256 and 128 neurons, ReLU activation) with dropout rates of 0.5 and 0.3, respectively, to mitigate overfitting,

and a final sigmoid output layer for binary classification. This phase, compiled with the Adam optimizer (learning

rate 10™*) and binary cross-entropy loss, trained the top layers for 10 epochs. An epoch refers to one complete
pass through the entire training data set during the learning process. In Phase 2, we unfroze the top eight VGG16
layers for fine-tuning, recompiling with a lower learning rate (2 X 10™>) and training for up to 30 epochs, using
early stopping (patience of 5) to prevent overfitting and retain the best validation accuracy.
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Figure 4. Sample training plots of detrended east-west (EW) displacement time series for station G009 in Japan, illustrating examples used to train the CNN model:
ChangePointCNN-GNSS. Each plot shows detected change points along with markers at the beginning and end of a large data gap (>1 year). The left image is labeled
“good”, as it correctly identifies both instant and transitional change points, making it suitable for reliable site velocity estimation. The right image is labeled “bad”, as it
fails to detect the transitional change point, making the configuration unsuitable for site velocity estimation.
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Figure 5. Three-component (NS, EW, UD) detrended displacement time series for GNSS station TXDL in Dalhart, northern Texas, showing seasonal horizontal motions
(NS, EW) and decade-scale sinusoidal vertical fluctuations (UD) possibly tied to groundwater cycles. First-row subplots display change points identified using a sliding-
window method (instant change points, NS and EW components) and a cubic-fitting method (transitional change points, UD component), purposefully labeled as “bad”
for CNN training. Second-row subplots exclude these change points associated with minor displacements and are labeled as “good” for CNN training.

Training plots were standardized to 224 X 224 pixels, and random horizontal flips were applied during data
augmentation using TensorFlow's ImageDataGenerator (Abadi et al., 2016). Horizontal flips mirror the time
series plots across the vertical axis, effectively simulating a reversal of the time direction (e.g., from left-to-right
to right-to-left), which ensures the model learns to detect displacement patterns regardless of the temporal
orientation of the GNSS data. The resulting model is saved as ChangePointCNN-GNSS .keras. For a detailed
understanding of the training methodology, readers are encouraged to refer to the Python program,
Train_ChangePointCNN-GNSS.py.

To determine the optimal pretrained model for our ChangePointCNN-GNSS architecture, we also evaluated
ResNet50 as a feature extractor for classifying GNSS change-point detection plots. ResNet50 is a 50-layer CNN
with residual connections (He et al., 2016). It excels in deep learning tasks by mitigating vanishing gradient
issues, making it a robust feature extractor for image-based classification. Its pretrained weights support transfer
learning for specialized applications like our GNSS time series plot analysis.

Both models were trained in two phases: initial training with frozen base layers and fine-tuning of the top layers.
VGG16 achieved a peak validation accuracy of 0.90 and a minimum validation loss of 0.45, slightly out-
performing ResNet50, which reached 0.82 validation accuracy and a minimum validation loss of 0.63. Despite
ResNet50's deeper architecture, its performance was hindered by overfitting, as evidenced by a higher final
validation loss (0.63 vs. VGG16's 0.45), likely due to its complexity relative to our moderate data set size.
VGG16's simpler architecture provided better generalization and stability for our task, leading to its selection as
the pretrained model for the ChangePointCNN-GNSS pipeline.

3.3. Educating the CNN for Omitting Minor Instant and Transitional Displacements

Traditional change-point detection, particularly for transitional change points, faces inherent limitations: the
criteria for identifying change points vary significantly across research objectives and spatiotemporal scales,
complicating the establishment of universal rules. Even among experts, subjective interpretations often yield
inconsistent change-point identification, particularly when distinguishing between physical displacements and
nonphysical signals.

For long-term site velocity estimation, we prioritize omitting minor instant and transitional displacements to
secure longer change-point-free segments. To train the model with this objective in mind, we labeled numerous
plots containing detected change points associated with minor displacements as “bad” and those omitting these
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change points as “good.” Figure 5 showcases several examples of these labeled plots, illustrating the omission of
change points associated with minor displacements in change-point detection.

Minor displacements in GNSS time series often arise from nontectonic influences such as transient noise,
multipath effects, or localized environmental factors (e.g., short-term droughts, vegetation changes, fluctuations
of groundwater levels). These artifacts manifest spurious displacements—sometimes as alternating positive and
negative instant or transitional displacements. Over multiyear timescales, such random fluctuations tend to cancel
out, leaving the long-term linear trend largely unaffected. Including change points associated with these minor
displacements may lead to overfitting of noise or misinterpretation of short-term variations as long-term defor-
mation trend, particularly in vertical displacement analyses where seasonal and environmental signals are
prominent. By omitting change points associated with minor displacements, we prioritize segments of uninter-
rupted motion that robustly capture the site's secular velocity. However, the determination of which change points
to exclude or include is somehow subjective, guided by research objectives and experience (see Figure 5).

Our Al-driven approach resolves this ambiguity by training the CNN on meticulously curated data sets, enabling
it to implicitly learn context-dependent distinctions from expert-labeled examples. This ensures methodological
consistency while retaining adaptability to varied geophysical contexts. Through repeated exposure to nuanced
cases, the model autonomously determines optimal change-point configurations tailored to specific objective,
accurately estimating long-term site velocities. By doing so, the CNN-guided framework outperforms rigid rule-
based methods, demonstrating flexibility in handling the complexities of GNSS data analysis. This hybrid
approach facilitates reliable velocity estimates across diverse tectonic, anthropogenic, and environmental settings.

3.4. Model Accuracy and Probability Score

The ChangePointCNN-GNSS model is designed to assess the suitability of analytically detected change points for
reliable site velocity estimation from GNSS time series. The training data set is split into 80% for training and 20%
for validation. In addition, we created an independent test set comprising approximately 10% of the training data
set size, which were not used during training or validation. These test images were carefully selected to include a
representative balance of both “good” and “bad” cases, ensuring a robust and unbiased evaluation of the model's
performance.

In the CNN training program, validation and test data sets serve distinct roles. The validation data set guides
model training by monitoring the generalization capability of the model, tuning hyperparameters (such as learning
rate and batch size), and detecting convergence or potential overfitting. In contrast, the test data set is evaluated
only after training concludes, providing an unbiased estimate of the model's performance on completely inde-
pendent data. The CNN model achieved a validation accuracy of 0.90 and a test accuracy of 0.89. Considering the
inherent ambiguity in labeling training images strictly as “good” or “bad”’—since many change-point plots are
subjectively rated as “OK,” meaning neither distinctly good nor clearly bad, and thus inconsistently labeled—the
achieved accuracy values near 0.9 are notably high.

Rather than providing a binary classification of “good” or “bad,” the CNN model outputs a probability score
ranging from O to 1 as an assessing result for each input image. The probability score is defined as the model's
predicted probability that a plot belongs to the “good” class using a sigmoid activation function. This probabilistic
approach, leveraging the sigmoid activation in the final dense layer, allows for nuanced assessment, enabling the
model to rank candidate change-point configurations based on their likelihood of being optimal. This scoring
mechanism is critical for our application, as it facilitates the selection of the most appropriate change-point
configuration for each GNSS time series. The average probability score for “good” images in the test data sets
is 0.87 and the average score for “bad” images is 0.1. These scores demonstrate the model's effectiveness by
showing a clear distinction between suitable (good) and unsuitable (bad) plots, underscoring its ability to
accurately differentiate between the two.

In practical applications, the CNN model evaluates multiple candidate change-point-detection plots for each time
series, with each plot generated using a different configuration of analytical parameters. These plots, derived from
the sliding-window and cubic-fitting methods, are scored by the CNN. The iterative process selects the first
parameter configuration that meets or exceeds a probability score threshold of 0.85; if none are found, the
configuration with the highest score after evaluating all candidates is selected. This ensures the identification of
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Vertical Land Motion Worldwide (IGS20) via GNSS: Subsidence and Uplift
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Figure 6. Map illustrating global vertical land motion patterns derived from GNSS data (~12,500 stations). Vertical
velocities (IGS20) are shown in millimeters per year (mm/year) using a color-coded scale.

optimal parameter settings, which enhances the precision of site velocity estimates by reliably identifying the
longest change-point-free segment for linear regression.

4. Results

The methods introduced in this study are integrated into a Python program, GNSS_CPD_VelocityEstimation.py,
which efficiently computes site velocities for approximately 15,000 GNSS sites in about 2 days on a Dell Pre-
cision workstation equipped with the Intel® Xeon® W3-2423 processor (6 cores, up to 4.2 GHz) and 64 GB of
RAM. The station information and estimated site velocities (IGS20) are provided in the data set archived on
Zenodo (Wang et al., 2025; file: IGS20_Velocities_at_Global_GNSS.txt).

Figure 6 illustrates the long-term vertical ground motion velocities at approximately 12,500 global GNSS sites,
providing a global perspective on land uplift and subsidence patterns. The site velocities are aligned to the In-
ternational GNSS Service 2020 (IGS20) reference frame (Rebischung et al., 2022). While velocities were
calculated for approximately 15,000 stations, we omitted those with extreme vertical velocities and consolidated
colocated or closely spaced stations to a single representative site to enhance map readability and avoid visual
clutter. The map reveals that land uplift follows distinct and widespread patterns across the globe, with yellow to
orange dots indicating uplift rates of 2 to over 10 mm/year, while subsidence, marked by cyan to blue dots,
appears less prevalent on a global scale. Many uplift patterns align with well-established glacial isostatic
adjustment (GIA) processes, as documented in regions like Scandinavia (notably Sweden and Finland),
Greenland, Iceland, and much of Canada (e.g., Caron et al., 2018; Peltier et al., 2015; Zhou et al., 2020), where the
Earth's crust continues to rebound following the retreat of glaciers from the last Ice Age, often at rates around a
few mm/year.

The most significant uplift patterns are driven by tectonic activity, particularly in tectonically active zones such as
the eastern coastal region of Japan, central Taiwan, the Alaskan coast extending to the western coast of the United
States, and the western coast at the southern tip of South America, where active plate interactions generate
substantial uplift, frequently surpassing 5 mm/year. These subsidence and uplift patterns, consistent with previous
global vertical land movement studies (e.g., Hammond et al., 2021), demonstrate the ChangePointCNN-GNSS
model's ability to refine site velocity estimates, providing insights into geodynamic processes, regional tec-
tonics, and sea-level changes.

WANG ET AL.

9 of 15

85UB0]7 SUOLILLIOD @A e840 3|edl|dde ayy Aq peusencb ae sejoe VO ‘@SN Jo Sajni Joj Afeiq18ulUO A8]IA UO (SUORIPUOD-pUB-SWLB)LI0D" A3 [IM"Aeiq 1 BuUO//SANY) SUORIPUOD pUe SWid | 8U 88S *[G20g/TT/0T] uo AiqiTauliuo felim ‘ Buep NvVNOOND Aq 0TE000HCSZ0Z/620T OT/10p/Lod" A8 1M Areiq putjuosgndnBe//sdny wo. papeojumoq ‘v ‘SZ0Z ‘0T2SE66C



LYel s . . .
M\I JGR: Machine Learning and Computation 10.1029/2025JH000910
Vertical Land Motion (IGS20) Measured by GNSS in Southern Canada and the U.S. Mainland
b 5 § 2|
58 4“° ofe H‘l ]
45°N : T i e
40°N ) %%ﬂ
() O &
© 24
T 35°N ) | ,
.. Vertical Velocity (mm/yr)
> -2to2
e -infto-10
30°N -10to -5
-5to -2
2to5
- 5to 10
25°N St {) = 10toinf
120°W 100°W 90°W 80°W 70°W

Longitude

Figure 7. Map showing the magnitude of vertical land motion derived from GNSS data across southern Canada and the contiguous United States. Vertical velocities
(IGS20) are shown in millimeters per year (mm/year) using a color-coded scale.

A detailed analysis of Figure 7, which zooms into southern Canada and the U.S. mainland, highlights a distinct
uplift pattern in the middle-south U.S. along the Mississippi River, where yellow dots indicate uplift rates of
2-5 mm/year. This uplift is particularly striking because the region, encompassing eastern Texas, Arkansas,
western Tennessee, and Mississippi, is generally regarded as an area experiencing minor land subsidence due to
groundwater extraction (e.g., Galloway et al., 1999; Rodgers & Whaling, 2020; Traylor et al., 2024; Turco
et al., 2025). The observed uplift may be attributed to understudied processes such as isostatic responses to
sediment unloading, subtle tectonic adjustments, groundwater storage recovery in large aquifer systems
(Larochelle et al., 2022), though these mechanisms remain poorly documented in this area. Additionally, Figure 7
also reveals pronounced subsidence around the Great Lakes region, including Michigan, Wisconsin, Minnesota,
northern Illinois, northern Indiana, and southern Ontario, Canada, with subsidence rates often ranging from 2 to
5 mm/year, likely driven by a combination of GIA relaxation (e.g., Kreemer et al., 2018), groundwater withdrawal
for agricultural irrigation, and rise of Great Lakes surface water (Argus et al., 2020).

These contrasting patterns, uncovered through the large-scale application of our automated method, highlight the
significance of high-accuracy, globally consistent site velocities. The efficiency and reliability of our approach
provide a new tool for the research community to identify previously overlooked regions of land motion and
explore their underlying causes and implications for global and regional-scale sea-level change and tectonic
studies.

5. Discussion
5.1. Comparison With MIDAS Velocities

Our global process identified approximately 14,600 GNSS stations with at least 4-year-long change-point-free
segments in all three components (NS, EW, UD). For a follow-up review, we compared velocities derived from
our method with those from MIDAS for these stations. This comparison serves as a diagnostic tool rather than a
validation of our velocities, as MIDAS does not provide a definitive ground truth for secular velocities in complex
GNSS data sets (Blewitt et al., 2016). At about 12,200 stations (approximately 90% of the data set), the velocity
differences are less than 2 mm/year in all directions, indicating strong agreement between the two methods
despite their differing approaches.

In contrast to our segment-based approach, which isolates a single longest stable segment, MIDAS derives a
velocity by calculating the median rate from the slopes of all possible 1-year data pairs within the entire time
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Figure 8. Change-point detection and site velocity estimates for GNSS station TLKA, located ~115 km north of Anchorage, Alaska. (Left panel) Detrended daily
displacement time series (2000-2015) with detected instant and transitional change points; the longest change-point-free segment in each time series, used for site
velocity estimation, is highlighted in red. (Right panel) Displacement time series (relative to IGS20) with estimated site velocities. A prominent step in the horizontal
components reflects coseismic displacement from the 2002 Denali earthquake (M 7.9, 3 November 2002).

series, without explicit change-point detection (Blewitt et al., 2016). This method effectively resists outliers
by using the median statistic, while our method prioritizes the identification of a single, long-term stable
segment to ensure low velocity uncertainties. The key difference lies in their handling of nonlinear motion; a
significant discrepancy (e.g., >2 mm/yr) between their estimated velocities serves as a robust indicator that a
station's time series likely contains complex deformation signals or undocumented disturbances. Therefore,
for global or regional analyses, we recommend cross-verifying velocities from both methods, as provided in
the comparative data set archived on Zenodo (Wang et al., 2025; file: IGS20_Velocities_ CNN_MIDAS.txt).
Stations where differences exceed 2 mm/year are prime candidates for expert, case-by-case analysis,
requiring a manual review of the time series plots to determine the most appropriate velocity, as no single
method can guarantee optimal estimates for all applications given the complex nature of real ground motions
and GNSS noise patterns.

5.2. Linking Secular and Site Velocities

Secular velocities in geodesy and tectonics refer to the long-term, steady rates of tectonic plate motion, averaging
out transient effects like seasonal variations or earthquake-induced displacements. These velocities represent the
consistent background movement of the Earth's crust over extended periods. In contrast to idealized secular
velocities, our site velocity estimates may reflect station-specific temporal complexities. By integrating the
ChangePointCNN-GNSS model with analytical techniques, our approach delivers robust velocity estimates that
align closely with secular velocities in tectonically stable regions. In regions with frequent earthquakes or vol-
canic activity, site velocities primarily reflect secular motion but may be partially biased by ongoing postseismic
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deformation or long-term volcanic processes, which can continue for years to decades. Researchers must account
for these differences when using the site velocity to interpret crustal deformation and assessing hazards in such
regions.

Figure 8 presents the three-component displacement time series (relative to IGS20) for the TLKA GNSS station,
highlighting detected change points. The TLKA station is located in Alaska in south-central, approximately
115 km north of Anchorage. The station lies in a tectonically active region influenced by the interaction of the
Pacific and North American plates and numerous active faults. The left panel shows instant and transitional
change points, while the right panel identifies the longest change-point-free segments used for site velocity
estimation. A significant step in the horizontal components reflects coseismic displacements from the 2002
Denali earthquake (M 7.9, 3 November 2002). This station is located approximately 200 km from the epicenters
of the 2002 Denali and the 1964 Alaska (M 9.2, 27 March 1964) earthquakes. Postseismic deformation from the
2002 Denali earthquake was significant for about 5 years as depicted in the displacement time series, and
postseismic displacements (residual effect) from the 1964 earthquake may still contribute to present-day crustal
displacements in the TLKA area (e.g., Suito & Freymueller, 2009).

Thus, deriving precise secular velocities for the tectonic block in this region is challenging due to these effects.
Our method effectively identifies stable segments for estimating site velocities, minimizing disruptions from the
2002 Denali earthquake. The resulting velocities provide the best estimates of long-term tectonic block motion in
this area. The MIDAS method estimates velocities at TLKA as —22.1 (NS), —15.4 (EW), and 11.7 (UD) mm/
year. In contrast, our method yields velocities of —23.4 (NS), —11.4 (EW), and 0.1 (UD) mm/year. The horizontal
velocity differences between the two methods are in the order of a few mm/year, while the vertical velocity
difference reaches up to 10 mm/year. Our velocity estimates minimize the potential impact of postseismic dis-
placements by omitting approximately 6 years of data (with slightly different durations for each of the three
components) following the Denali earthquake.

For studies in complex tectonic settings, we recommend inspecting time series plots on a case-by-case basis to
select the most appropriate velocity for specific research objectives, as the choice of velocity depends on the
study's objectives, such as interseismic and long-term crustal motion studies and landslide monitoring (e.g., Wang
et al., 2015).

5.3. Machine Learning: From Data-Driven Models to Image-Driven Assessment

Under the broad umbrella term of AI, machine learning (ML) is a specialized domain where algorithms are
designed to learn from data and subsequently make predictions or informed decisions. Within ML, an advanced
subset known as deep learning (DL) employs neural networks composed of multiple layers to address complex
tasks, such as image recognition and speech processing. A further specialized category within DL, known as
CNNs, excels specifically at analyzing spatial patterns in images, such as those representing change-point con-
figurations in GNSS time series plots. Unlike conventional ML techniques that rely heavily on manually engi-
neered statistical or sequential features extracted from time series, the CNN method adopted in this study directly
learns temporal patterns from visual representations of displacement time series and change-point plots, closely
emulating the visual reasoning and context-awareness of human experts.

A wide variety of ML approaches, including random forest, multilayer perceptron (MLP), extreme gradient
boosting (XGBoost), linear support vector classification (LSVC), and long short-term memory (LSTM) methods,
have previously been applied to GNSS time series analysis (e.g., Chen et al., 2023; Crocetti et al., 2021; Gao
et al., 2022; Li et al., 2023; Ozbey et al., 2024; Wang et al., 2021; Xie et al., 2023). These data-driven methods
typically utilize predefined statistical features or temporal assumptions to detect anomalies or discontinuities.
Commonly used features include statistical metrics (e.g., mean, standard deviation, skewness, kurtosis),
frequency-domain characteristics (Fourier coefficients), trend indicators (linear or polynomial regression co-
efficients), and displacement metrics (e.g., maximum, minimum, range, step-detection thresholds). However,
reliance on these manually crafted features can limit the flexibility and adaptability of these methods, particularly
when dealing with context-specific change-point detection scenarios across diverse GNSS stations exhibiting
varied noise levels, data gaps, and geophysical signals. Moreover, these traditional ML techniques often require
extensive feature engineering or detailed labeling of training data.
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Recently, one-dimensional CNNs (1D CNNs) have demonstrated exceptional performance across various ap-
plications involving time series data (e.g., Ismail Fawaz et al., 2019; Kiranyaz et al., 2021), including biomedical
signal classification (Kiranyaz et al., 2017) and structural health monitoring (Abdeljaber et al., 2017). 1D CNN is
a data-driven method, which processes sequential data using convolutional filters to capture temporal patterns. By
directly processing sequential displacement data, 1D CNNs could detect subtle trends and anomalies relevant to
tectonic and nontectonic signals within GNSS data. Future research might explore hybrid models integrating 1D
CNNs with analytical approaches to further enhance robustness, computational efficiency, and interpretability in
complex GNSS data sets.

In contrast to purely data-driven AI methods, this study introduces a hybrid analytical-CNN framework that
integrates physical modeling with image-based evaluation. Specifically, we adopt a two-dimensional convolu-
tional neural network (2D CNN), a model designed to process spatial patterns and features in visual represen-
tations, typically images. Leveraging transfer learning from a large pretrained CNN, our 2D CNN analyzes
synthetic “scenes”—visual plots of displacement time series annotated with analytically detected change points.
By evaluating these visual representations holistically, the 2D CNN performs a task analogous to expert visual
judgment, identifying and prioritizing change-point-free segments to optimize site-velocity estimation.

Our decision to represent GNSS time series and candidate change points as images, subsequently evaluated by a
2D CNN, is strategically motivated by our primary objective of accurately estimating long-term site velocities.
This estimation depends on selecting a suitable overall configuration of change points rather than focusing on the
identification of individual change points from raw data. This image-based approach offers several advantages.

1. It closely mimics the visual inspection performed by geodetic experts, capturing contextual nuances—such as
the alignment of change points with geophysical events or data gaps—while disregarding minor displacements
that are challenging to encode numerically.

2. It simplifies training data annotation, requiring only binary classifications (“good” or “bad”), thus eliminating
the need for granular labeling (exact change-point positions) required by data-drive ML methods.

3. By leveraging transfer learning from pretrained CNN models, it achieves high validation accuracy with
relatively modest training data sets, promoting scalability across diverse GNSS networks.

4. Tt integrates seamlessly with the hybrid analytical framework (sliding-window and cubic-fitting techniques),
enabling efficient ranking of candidate configurations according to their suitability for precise long-term site
velocity estimation.

6. Conclusions

This study significantly advances the field of geodesy through two key contributions: the development of the Al
model ChangePointCNN-GNSS keras and the generation of reliable site velocities (IGS20) for approximately
14,600 GNSS stations worldwide. To promote transparency and reproducibility, we have publicly released all
supporting materials, including the training and test data sets, the training script (Train_ChangePointCNN-GNSS.
py), and the integrated processing tool (GNSS_CPD_VelocityEstimation.py) (Wang et al., 2025). These open-
source tools are designed to be easily adapted for different GNSS data sets or customized research goals.
Beyond GNSS, the methodological framework is applicable to other geophysical time series such as those from
tide gauges, extensometers, groundwater wells, and meteorological stations, enabling broad interdisciplinary use.
Ultimately, this study lays the foundation for robust, image-driven Al methodologies for large-scale geophysical
monitoring worldwide.
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