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Abstract In recent years, Synthetic Aperture Radar Interferometry (InSAR) has become widely utilized for
slow‐moving landslide monitoring due to its high resolution, accuracy, and extensive coverage. By integrating
data from various orbits/platforms and monitoring sources, one‐dimensional (1‐D) line‐of‐sight (LOS) InSAR
measurements can be explored to infer three‐dimensional (3‐D) movements. However, inconsistencies in
observation times among different orbits and monitoring sources pose challenges in accurately capturing
dynamic 3‐D movements over time (referred to as 4‐D). In this study, we propose a novel method, termed KFI‐
4D that incorporates spatiotemporal constraints into the traditional Kalman filter. This enhancement transforms
the underdetermined problem of 4‐D movement acquisition into a dynamic parameter estimation problem,
enabling precise monitoring of landslide movements. The KFI‐4D method was evaluated using both synthetic
data sets and real data from the Hooskanaden landslide, demonstrating an improvement exceeding 50% in root
mean square errors (RMSEs) compared to conventional methods. Additionally, the high‐resolution
characteristics of InSAR‐derived 4‐D movements allow for the analysis of strain invariants, providing insights
into block interactions and landslide dynamics. Our findings reveal that strain invariants effectively indicate the
distribution and activity of landslide blocks and slip surfaces as well as their response to triggers. Notably,
abnormal signals identified in strain invariants prior to the catastrophic event at Hooskanaden suggest potential
for early warning of landslides. The future integration of data from advanced satellites, such as NISAR, ALOS4
PALSAR3, and Sentinel‐1C, is expected to further enhance the KFI‐4D method's capabilities, improving
temporal resolution and early warning potential for landslide monitoring.

Plain Language Summary InSAR, a radar technology, is a powerful tool for monitoring landslides,
providing detailed and accurate displacement data. Combining data from multiple sources offers a more
complete picture of 3‐D displacements. However, satellites observe at different times, making it challenging to
get an accurate picture of slow‐moving landslide movements over time (4‐D monitoring). To address this, we
developed KFI‐4D, a new method that enhances the traditional Kalman filter by adding space and time
constraints and improving the tracking of landslide movements in 4‐D. Testing with both simulated data and real
data from the Hooskanaden landslide showed that KFI‐4D improved accuracy by over 50% compared to the
traditional method. Our method also helps to study how different parts of a landslide interact. We found that
analyzing these interactions can provide important insights into the behavior and triggers of landslides. Notably,
unusual signals detected before the major event of the Hooskanaden landslide suggest that our method could be
useful for early warning systems. Overall, KFI‐4D could make landslide monitoring more accurate and reliable,
allowing for more data from different satellites and enhancing the monitoring process. Future satellites are
expected to further improve this method, making it even more effective for early warning of landslides.

1. Introduction
Under the influence of multiple driving factors, slow‐moving landslides can experience a reduction in shear
strength and/or an increase in shear stress, which subsequently diminishes the stability of the landslide, leading to
accelerated movement or even collapse (Lacroix et al., 2020). The simultaneous impact of multiple factors adds
complexity to the study of slow‐moving landslide mechanisms. In recent decades, the advancement of spaceborne
Interferometric Synthetic Aperture Radar (InSAR) technology has provided a comprehensive and innovative
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approach for geohazard research (Karanam & Lu, 2023; Y. Xu, Schulz, et al., 2021). Based on the high spatial
resolution capabilities of InSAR observations, varying responses to triggering factors can be observed in different
sections of a landslide (X. Hu, Bürgmann, et al., 2019). Through the utilization of spaceborne InSAR's long‐term
global monitoring capabilities, unknown landslides can be retrospectively studied using archived data, enabling
an understanding of their past dynamics and the implementation of targeted disaster management strategies (A. L.
Handwerger et al., 2019; X. Liu et al., 2020). However, current SAR satellites are predominantly polar‐orbiting
and employ right‐looking observations. As a result, spaceborne InSAR can only capture the projected defor-
mation of landslides along the line of sight (LOS), limiting its application in landslide studies (J. Hu et al., 2014).

To address the challenge of deriving three‐dimensional (3‐D) movements of slow‐moving landslides using
spaceborne InSAR, researchers have developed a series of new techniques over the past two decades. These
techniques encompass the integration of multiple independent InSAR measurements (Alexander L. Handwerger
et al., 2021; X. Hu et al., 2020), azimuth deformation‐assisted methods (Shi et al., 2021; C.Wang et al., 2018), and
model‐constrained methods (J. Hu et al., 2017; Zheng et al., 2023). By combining multi‐temporal and multi‐
source SAR data, it is possible to further obtain the four‐dimensional (4‐D) deformation of slow‐moving land-
slides (three dimensions in space plus one dimension in time domain, also known as dynamic 3‐D deformation).
The acquisition of 4‐D deformation using InSAR technology offers a unique and invaluable perspective for
landslide studies, enabling the estimation of landslide thickness and facilitating the quantification of landslide
rheology (X. Hu et al., 2020). However, obtaining 4‐D deformation of landslides requires the multi‐temporal and
multi‐source observations, with different observations having different acquisition times. Consequently,
acquiring 4‐D deformation using spaceborne InSAR technology becomes an underdetermined problem (Sam-
sonov, 2019), limiting the potential of InSAR technology in capturing 4‐D deformation.

Currently, there is limited research on the acquisition of 4‐D deformation of slow‐moving landslides using InSAR
technology. X. Hu et al. (2020) successfully obtained the 4‐D deformation of the Slumgullion landslide using
airborne SAR data. In this particular case, the temporal differences between observations from different orbits
were relatively small, allowing for the temporal variations to be disregarded, thus facilitating the acquisition of 4‐
D deformation. However, achieving similar results in most areas where only spaceborne SAR data are available
poses significant challenges. To address the underdetermined problem of obtaining 4‐D deformation of land-
slides, Samsonov et al. (2020) proposed a novel version of theMultidimensional Small Baseline Subset (MSBAS‐
3D) technique. This technique, based on the principles of Tikhonov regularization, utilizes the L‐curve method to
determine the regularization parameter and employs it as a constraint for estimating 4‐D deformation. However, it
is worth noting that this method exhibits reduced robustness in the presence of substantial observation noise (J.
Liu, Hu, Li, Sun, et al., 2022). In landslide scenarios where decorrelation noise and atmospheric noise signifi-
cantly affect the data, acquiring reliable 4‐D deformation using this approach becomes challenging.

Kalman filter is a dynamic estimation technique that can transform the underdetermined problem encountered in
the fusion of multi‐source SAR data sets into a dynamic estimation problem (Dalaison & Jolivet, 2020; J. Hu
et al., 2013). Currently, it has found applications in the integration of InSAR and GPS (N. Liu et al., 2018) as well
as in the field of two‐dimensional deformation retrieval using spaceborne InSAR (J. Liu, Hu, Li, Sun, et al., 2022).
The key to the Kalman filter lies in constructing the state transition equation and the state update equation. To
address the impact of multiple noise sources in InSAR landslide monitoring and achieve more robust 4‐D
movement measurements, this study introduces a spatiotemporally constrained Kalman filter‐based InSAR
method for deriving 4‐D landslide movements, referred to as KFI‐4D. This method incorporates spatiotemporal
constraints in the state transition equation and the state update equation, and introduces a Huber's weighting
function (Yang et al., 2002) in the state update equation.

The performance of the proposed method is validated using both synthetic and real data sets, specifically the
Hooskanaden landslide on the West Coast of the United States. The West Coast is known to be severely affected
by geological disasters, particularly catastrophic landslides caused by heavy rainfall during storms. These events
not only result in damage to local buildings but also pose a serious threat to drivers on CA #1 and US #101.
Despite the significance of these events, the application of InSAR technology in studying the 4‐D movement of
landslides on the West Coast is relatively uncommon due to variations in imaging time and observation errors
among SAR satellites in multiple platforms/tracks. The Hooskanaden Landslide, one of the largest landslides on
the West Coast, experienced a catastrophic event in February 2019 following heavy rainfall. In this study, we
utilized the proposed KFI‐4D method and data from Sentinel‐1A/B ascending and descending tracks to estimate
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the 4‐D movements of the Hooskanaden Landslide from July 2016 to February 2019. It is important to note that
landslide movement often involves the interaction of multiple blocks rather than a single mass moving inde-
pendently. To understand these interactions, strain invariants play a critical role. This work not only calculates
strain invariants using the high spatial resolution characteristics of InSAR but also explores the dynamics of strain
invariants by analyzing the 4‐D movements of the Hooskanaden Landslide. Analyzing the variations of these
strain invariants will help reveal the dynamic interactions among different blocks of the Hooskanaden landslide,
providing a new perspective to gain deeper insights into the progressive development of the Hooskanaden
landslide under the influence of triggering factors, ultimately leading to the catastrophic event in 2019.

2. Study Area and Data Sets
The West Coast region, encompassing California, Oregon, and Washington, has long been recognized as one of
the most susceptible areas to landslides in the United States due to factors such as tectonic movements, weak
lithologies, and heavy rainfall associated with storms (Alberti et al., 2020). In order to address this issue, landslide
detection efforts have been conducted in this coastal area utilizing InSAR technology. The findings revealed a
total of 617 active landslides, out of which 588 were previously unrecorded (Y. Xu, Schulz, et al., 2021).
Furthermore, previous research has indicated that the type of bedrock in the region plays a crucial role in
determining the size and density distribution of landslides, while rainfall exerts a strong influence on the spatial
distribution pattern of these occurrences (Y. K. Xu, George, et al., 2021). It is important to note that along the
Pacific coast, where landslides are widespread, there is a population of 32 million individuals. During storm
events, the frequent incidence of landslide disasters often results in road closures, isolating certain areas and
inflicting significant economic and social consequences.

The Hooskanaden landslide is situated in Curry County, Oregon, on the west coast of the United States,
approximately 25 km from the northern border of California. US Highway 101 traverses through the landslide
(Figure 1a). The landslide extends over a length of more than 1 km, with a maximum width of 550 m and a total
coverage area of 405,000 m2. The estimated volume of the landslide is approximately 1.4–2.1 × 106 m3. The
earthflow is characterized by intensely sheared rocks and heterogeneous mixtures of serpentinite blocks
(Parker, 1979). The primary lithological components of the landslide comprise sandstone, siltstone, and
mudstone. Notably, the landslide material is highly fragmented, exhibiting minimal residual bedding (Alberti
et al., 2020). Over the past few decades, the landslide has experienced several significant events, particularly in
1977, followed by two more destructive failures in 1995 and 2019, with approximately 20 years's separation in
between (Alberti et al., 2020).

High‐resolution LiDAR data revealed significant past movements and surface marks of the landslide (dashed
green lines in Figure 1a). Figure 1b demonstrates long‐term slow creep motion scratches on the landslide surface,
accompanied by tensile cracks and notable scarps at the rear edge, while Figure 1c shows the optical image for
comparison. The February 2019 event caused substantial road damage (Figures 1d and 1e). Analyses using
LiDAR data from multiple periods revealed a vertical displacement of 12 m and a horizontal movement of 45 m
(Alberti et al., 2020). The event resulted in a two‐week closure of US Highway 101, causing an economic loss of
about 3.7 million dollars. It was reported that this significant event could be attributed to dense winter rainfall in
2019 based on the time‐series analysis using Sentinel‐1 data (Xu et al., 2020). However, it was evident that the
strength of total rainfall alone could not accurately describe the occurrence of major landslide events (Alberti
et al., 2020). Field geological surveys, complemented by limited subsurface observation data, revealed that the
landslide comprises several distinct blocks rather than being controlled by a single sliding surface (Parker, 1979).
Individual blocks move along the failure surfaces determined by lithology and planes of weakness (Alberti
et al., 2020). Hence, our study aimed to utilize high‐resolution InSAR 4‐D measurements to investigate the
interaction dynamics between these blocks, which could yield a comprehensive understanding of the failure
mechanism, offering novel insights for subsequent landslide monitoring and early warning strategies.

In order to analyze the 4‐D movements of the Hooskanaden landslide using InSAR technology, we obtained two
tracks consisting of over 110 scenes of Sentinel‐1A/B data from July 2016 to February 2019 (i.e., the T13 and T35
tracks shown in the bottom right subplot of Figure 1a). It is noteworthy that an additional distinct third track of
Sentinel‐1 data sets is available (depicted as the S1‐T108 track in the subplot of Figure 1a). This track presents an
opportunity to independently validate the proposed method and was one of the reasons why this area was chosen
as the test site. Additionally, we obtained the Copernicus Global DEM to eliminate the topographic phase in the
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InSAR processing chain. More detailed information about the utilized SAR data sets are summarized in the Table
S1 of Supporting Information S1.

3. Methodology
The Kalman filter plays a crucial role in the processing of multi‐source data fusion (Dalaison & Jolivet, 2020; J.
Hu et al., 2013; N. Liu et al., 2018). It employs a series of mathematical models to describe dynamic systems,
particularly the state transition equation (STE) and the state update equation (SUE). The STE utilizes a specific
motion model that leverages historical data, including the state vector and its variance‐covariance matrix, to
predict the future state of the system. Subsequently, when the observation system acquires observations for the

Figure 1. Overview of the Hooskanaden landslide. (a) A shaded relief map generated from a LiDAR DEM, along with the
geographical location of the landslide marked by a pink star in the bottom right corner. (b) Detailed shaded relief map of the
landslide, featuring internal scarps (IS) delineated based on the progress report by Parker (1979). (c) A Google Earth image
capturing the landslide area. (d and e) Photographs depicting the February 2019 slide event (Xu et al., 2020).
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next epoch, it updates the current state by combining the predicted system state with the SUE. This iterative
process enables the dynamic estimation of the system state. In general, this process can be succinctly represented
by a common Kalman filter formula:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̂−i = F X̂i− 1
D−X̂,i = FDX̂,i− 1 F

T + Qi

Kκ = D−X̂,iH
T (HDX̂,i− 1H

T + DL)
− 1

X̂i = X̂
−

i + Kκ (L − HX̂
−

i )

DX̂,i = (E − KκH)D
−
X̂,i

(1)

where X̂−i and X̂i represent the predicted and estimated 3‐D displacements of the state vector at i th time,
respectively, with the hat symbol indicating that the variable represents an estimate. Our aim is to obtain the 4‐D
movements of landslides, and similar to conventional temporal InSAR approaches, we assume the deformation at
time zero to be zero, such that the state vector at the i th time step represents the cumulative 3‐D displacements. To
link the state vectors at i th time and (i− 1) th time, the Kalman filter typically requires the design of a state
transition matrix F in the state transition equation X̂−i = FX̂i − 1, based on the motion of the dynamic system, to
perform dynamic prediction of the state vectors. Furthermore, to suppress the noise in the Kalman filter system,
the dynamic update of the state vector in the SUE X̂i = X̂−i + Kκ (L − HX̂−i ) requires a variance‐covariance
matrix that considers the noise corresponding to the state and observation at different times. In Equation 1,
D−X̂,i, DX̂,i, and DL are the variance‐covariance matrix of the predicted state vector X̂

−

i , the estimated state vector

X̂i, and the observation vector L, respectively.Qi represents the state transition variance‐covariance matrix, which
accounts for the inevitable discrepancies between the actual deformation and the forecast (Dalaison & Joli-
vet, 2020). The gain matrix Kκ in the SUE plays a vital role in updating the state vector and can be constructed
using the projection vector H, the variance‐covariance matrix of the observation value DL, and the variance‐
covariance matrices of the predicted state vector D−X̂,i and the estimated state vector DX̂,i − 1.

The performance of the Kalman filter implementation greatly relies on the establishment of the STE and the SUE
based on the dynamic system conditions. In light of this, the method proposed in this study aims to leverage the
spatiotemporal characteristics of landslide motion to constrain the STE and SUE of the Kalman filter, thereby
achieving robust estimation of the 4‐D movements from InSAR observations. In the following sections, we will
delve into the details of the spatiotemporally constrained STE and spatially constrained SUE within the KFI‐4D
method. Additionally, we will provide an overview of the data processing procedures employed in this work,
followed by an implementation instruction for the KFI‐4D method.

3.1. Spatiotemporally Constrained State Transition Equation

The state transition equation (STE) serves as a crucial tool for predicting the state vector within the Kalman filter
framework. In KFI‐4D, this equation facilitates the prediction of 3‐D landslide movements in subsequent epochs.
Conventionally, InSAR time‐series processing methods utilizing the Kalman filter have only accounted for the
relationship between time i − 1 and i in STE, without accounting for the relationship between 3‐D deformations
(J. Hu et al., 2013; J. Liu, Hu, Li, Sun, et al., 2022). However, these methods face limitations due to their
insensitivity to north‐south deformation in InSAR results, hindering the acquisition of 3‐D movements for a given
epoch. Consequently, these methods often yield only dynamic 2‐D deformations, disregarding the north‐south
deformation component. To overcome this limitation and accurately obtain 3‐D landslide movements, several
studies have demonstrated the efficacy of incorporating surface parallel flow (SPF) as a constraint on the 3‐D
movements of landslides (Joughin et al., 1998; Samsonov et al., 2020; Zheng et al., 2023). This approach en-
hances the precision of landslide 3‐D movement using InSAR technology. Thus, in the STE of KFI‐4D, we
integrate SPF as a spatial constraint. As a result, the predicted state vector value x̂−i = [x̂e,i

− x̂n,i− x̂v,i− ]
T at time i can

be expressed through the subsequent equation:

x̂−i = [Fe Fn Fv]
T
[x̂e,i− 1 x̂n,i− 1 x̂v,i− 1]

T
(2)
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where Fe, Fn, and Fv represent the state transition vectors corresponding to the 3‐D deformations x̂e,i− 1, x̂n,i− 1, and
x̂v,i− 1, respectively. By incorporating the slope constraint (i.e., the ratio of vertical to horizontal movement equals
the slope gradient) and the aspect constraint (i.e., horizontal movement aligns with the aspect direction) of the
SPF, this part can be expressed as:

F =

⎡

⎢
⎢
⎢
⎢
⎣

Fe
Fn
Fv

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0

cos(θasp) ⋅ sin(θasp) 0 0

θe θn 0

⎤

⎥
⎥
⎥
⎥
⎦

(3)

where θasp represents the slope aspect on the corresponding pixel of InSAR observation measured in radians,
while θe and θn denote the eastward and northward components of the slope gradient at the pixel, both dimen-
sionless. Therefore, Equation 2 incorporates terrain information to provide a constraint on the 3‐D deformation,
addressing the issue of InSAR's insensitivity to north‐south deformation. However, it is important to note that
Equation 2 only constraints the 3‐D deformation between time i and time i − 1, without explicitly establishing a
connection in the time domain to predict the deformation at time i based on observations at time i − 1. In previous
InSAR techniques that use the Kalman filter, a linear model is commonly employed by incorporating the time
interval between adjacent imaging moments as a parameter in matrix F (J. Hu et al., 2013; N. Liu et al., 2018).
This enables prediction from the previous epoch to the next. However, landslide movement is often influenced by
multiple factors such as rainfall and groundwater levels, exhibiting significant seasonal and fluctuating patterns.
Linear deformation models alone are insufficient to effectively capture the complex movement of landslides.
Furthermore, InSAR observations are susceptible to significant random noise and atmospheric interference,
which reduces the reliability of 4‐D deformation results. To address these limitations, the proposed method in-
troduces a time‐dependent smooth process constraint as a temporal constraint in the STE to connect observations
from adjacent epochs and suppress the influence of noise (J. L. Wang et al., 2019). This constraint takes into
account the correlation between observations at neighboring epochs, making it particularly suitable for slow‐
moving landslides. For instance, considering the eastward deformation X̂e,i− 1 as an example, assuming the
estimated deformations at time i − 1 and the previous n epochs in the eastward direction are
X̂e,i− 1 = [dei− 1,dei− 2,⋯,dei− n]T , the following relationship holds between the deformations within these n
epochs:

X̂e,i− 1 = BiAi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 Δti− 1 Δt2i− 1 ⋯ Δtmi− 1
1 Δti− 2 Δt2i− 2 ⋯ Δtmi− 2
1 ⋮ ⋮ ⋱ ⋮

1 Δti− n Δt2i− n ⋯ Δtmi− n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α0
α1
⋮

αm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)

where Δti− n represents the time interval between the image at time i − 1 and the n
th preceding image, andm is the

order of the polynomial used for fitting. The idea behind this constraint is that historical deformation is assumed to
be fitted by time‐dependent m‐order polynomials, where α0 − αm represents the polynomial coefficients. Then,
the displacement at the current epoch can be predicted by this polynomial. In this study, we usem= 3. It should be
noted that the n is an arbitrary constant. This allows for the prediction at time i, where the corresponding
polynomial coefficients Ai can be estimated based on the polynomial coefficients Ai− 1 at time i − 1:

Âi = QÂ,iQ
− 1
A,i− 1Ai− 1 + QÂ,iB

T
i X̂e,i− 1 (5)

In the above Equation, QÂ,i and QÂ,i − 1 represent the variance‐covariance matrices of Ai and Ai− 1, respectively.
These matrices can be calculated using Bi, which is constructed from the time interval and its higher‐order powers
(J. L. Wang et al., 2019):

QÂ,i = (B
T
i Bi)

− 1
(6)
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Let ε0 = QÂ,iQ
− 1
A,i− 1Ai− 1. By incorporating this into Equation 4, the eastward deformation d̂e,i at time i can be

calculated using the following equation:

d̂e,i = [1 Δti Δt2i ⋯ Δtmi ] Âi + ε0

= [1 Δti Δt2i ⋯ Δtmi ] (B
T
i ⋅Bi)

− 1BTi X̂e,i− 1 + ε0
(7)

By introducing a vector that incorporates the intermediate variable β to represent the coefficients of X̂e,i− 1 in
Equation 7, we obtain:

[1 Δti Δt2i ⋯ Δtmi ] (B
T
i ⋅Bi)

− 1BTi = [βe,i− 1 βe,i− 2 ⋯ βe,i− n] (8)

Through the integration of the aforementioned derivation process, there exists the following relationship between
X̂e,i and X̂e,i− 1:

X̂e,i = ΒeX̂e,i− 1 + Ε0

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

βe,i− 1 βe,i− 2 βe,i− 3 ⋯ βe,i− n

1 0 0 ⋯ 0

0 1 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dei− 1

dei− 2

dei− 3

⋮

dei− n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε0

0

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

where Βe is a coefficient matrix constructed from βe. Note that although we begin with Equation 4, where the
displacement time series is modeled by time‐dependent polynomials, the STE is only relevant to the epoch time
(i.e., ∆ti – ∆ti− n) of the displacement time series after the derivation of Equations 4–7, and the polynomial co-
efficients (i.e., α0 − αm) in Equation 4 do not need to be estimated.

Hence, employing the aforementioned equations enables the prediction of the state vector at time i by incorpo-
rating constraints from the preceding n state vectors at earlier instances i − 1, i − 2, …, i − n. Similarly, for the
deformation components aligned in the northward and vertical directions within the state vector, temporal
constraints can be established as well. Presuming that the temporal constraint coefficients in the northward and
vertical directions are denoted by Βn and Βv, respectively, and amalgamating Equations 2, 3 and 9, the state
transition matrix representing the spatiotemporal constraints in the Kalman filter can be expressed as:

X̂−i = diag(Be Bn Bu) [Fe Fn Fu]
T
[X̂e,i− 1 X̂n,i− 1 X̂v,i− 1]

T
(10)

3.2. Spatially Constrained State Update Equation

The SUE of the Kalman Filter employs the system observation value L and the Kalman Filter gain matrix Kκ at
time i to update the predicted state vector X̂−i and achieve the objective of accurately estimating the state vector X̂i
at time i by the following equation:

X̂i = X̂
−

i + Kκ (L − HX̂
−

i ) (11)

In previous studies, InSAR with Kalman filter often utilized the projection vector H, which is derived from SAR
satellite imaging geometry, to connect the system observation value L with the predicted state vector X̂−i (J. Hu
et al., 2013; J. Liu, Hu, Li, Sun, et al., 2022). However, InSAR observations do not possess sensitivity toward the
North‐South deformation component. Consequently, relying solely on the projection vector H fails to provide an
effective estimation of the North‐South deformation component. To overcome this limitation, we propose the
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introduction of SPF as a spatial constraint in the SUE, which enhances the estimation accuracy of the North‐South
deformation component:

L = H[d̂ −e,i d̂ −n,i d̂ −v,i]T = [he hn hv] [d̂
−
e,i d̂ −n,i d̂ −v,i]T

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− cos(αaz − 3π/2) sin(αinc) − sin(αaz − 3π/2) sin(αinc) cos(αinc)

cos(θasp) ⋅ sin(θasp) − 1 0

θe θn − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

d̂ −e,i

d̂ −n,i

d̂ −v,i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [obsLOS 0 0]T

(12)

The variables αaz and αinc denote the azimuth and incidence angles, respectively, of the corresponding SAR
observations. The observation of LOS deformation obtained from InSAR is represented as obsLOS. It is important
to note that in KFI‐4D, the inclusion of temporal constraints in STE leads to the utilization of multiple inter-
ferometric phases from different interferogram pairs at a given time i as observations. Consequently, a design
matrix is required to establish connections between the observations derived from various interferogram pairs.
Assuming that the SAR observation at time i, along with its preceding n SAR observations, forms M interfer-
ogram pairs (M < n, with interferograms having large spatiotemporal baselines excluded), where the SAR
observation at time i serves as the secondary image, the design matrix hifg can be mathematically expressed as
follows:

hif g =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1 0 0 ⋯ 1

0 − 1 0 ⋯ 1

⋮ ⋮ ⋮ ⋱ ⋮

0 0 − 1 ⋯ 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13)

where 1 denotes the epoch of primary SAR image observation, while − 1 represents the epoch of secondary SAR
image observation. By combining Equations 12 and 13, the system observation matrix L can be expressed as

L = HXi

= [hif g⊗ he hif g⊗ hn hif g⊗ hv] [Xe,i Xn,i Xv,i]
T (14)

Here, ⊗ denotes the Kronecker product operator.

In addition to the system observation matrix L, the SUE also requires the Kalman filter gain matrix. Based on
Equation 1, the Kalman filter gain matrix Kκ is determined not only by the projection vector H but also by the
variance‐covariance matrices of the predicted value D−X̂,i, the observation noise DL, and the previous estimate
DX̂,i − 1. Among these matrices, the variance‐covariance matrix of the predicted value D−X̂,i is calculated using the
state transition vector F, the previous estimate's variance‐covariance matrix DX̂,i − 1, and the state transition
variance‐covariance matrix Q. The computation of the state transition variance‐covariance matrix Q typically
involves adaptive estimation, utilizing the state transition matrix and the observation model as follows:

Qi = (1 − d(i)) ⋅Qi− 1 + d(i) ⋅ [Kκ,iυiυTi K
T
κ,i + D̂X,i − FD̂X,i− 1 ⋅F

T] (15)

where υi represents the difference between the estimated deformation value X̂i and the observed value L, and d(i)
is the adaptive factor, which can be expressed as:

d(i) =
(1 − b)
(1 − bi)

, 0< b< 1 (16)
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It should be noted that the calculation of the variance‐covariance matrix Q is performed after each completion of
the Kalman filter dynamic estimation. At this time, the newly obtained state transition variance‐covariance matrix
Qi will be used as Qi− 1 in the next epoch's estimation.

During the calculation process of the Kalman filter gain matrix Kκ, it is necessary to utilize the observation noise
variance‐covariance matrix DL, which represents the observation noise associated with the system observation
matrix L. Typically, this matrix can be derived from coherence. However, in the present method, the observations
comprise unwrapped interferograms, which may include outliers such as unwrapped errors and decorrelation
noise. To mitigate the influence of outliers, KFI‐4D incorporates the Huber weight equation as a variance
amplification model (Yang et al., 2002). Specifically, assuming that the observation noise variance‐covariance
matrix obtained directly from coherence at time i is denoted as DL cc,i, the observation noise variance‐
covariance matrix DL,i can be expressed using a variance amplification model as follows:

DL,i =
⎧⎪⎨

⎪⎩

DL cc,i |μ|< c

DL cc,i ⋅
|μ|
c

|μ|> c
, 1.0< c< 1.5 (17)

where c is a constant and μ represents the normalized residual of the observation matrix, which can be obtained
from the following equation (J. Hu et al., 2013):

μ =
υi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
DL cc,i + HD−X̂,iH

T
√ (18)

The Kalman filter gain matrix Kκ is central to the Kalman filtering technique. At each time step, it achieves the
optimal estimation of the state vector by determining the optimal weighting coefficient between the predicted
state vector and the observed measurements (Kalman, 1960). The principle behind estimating the optimal
weighting coefficient in the Kalman filter gain matrix is to minimize the covariance of the estimation error. By
taking the derivative of the estimation error covariance matrix and minimizing it, the expression for Kκ in
Equation 1 can be derived. Therefore, using the variance‐covariance matrix of the predicted state D−X̂,i, the
variance‐covariance matrix of the measurement noiseDL, the variance‐covariance matrix of the previous estimate
DX̂,i− 1, and the design matrix H, the Kalman filter gain matrix Kκ can be obtained.

3.3. Implementation Instruction for KFI‐4D Method

The workflow of KFI‐4D is shown in Figure 2. Although STE and SUE are the core of the KFI‐4D method, as
shown in Equation 1, the predicted values, estimated values, and their variance‐covariance matrix are continu-
ously iterated throughout the process. Therefore, before implementing the KFI‐4D method, it is necessary to
obtain initial state vectors to initialize the Kalman filter process. This section starts with the raw input data and
introduces the workflow of KFI‐4D.

In terms of input data, KFI‐4D requires SAR/InSAR observations acquired with at least two different imaging
geometries as well as a digital elevation model (DEM). Here, data sets with different imaging geometries should
exhibit significant differences in heading angles (e.g., ascending and descending tracks), incidence angles (e.g.,
adjacent tracks or different platforms), and looking angles (e.g., left‐ and right‐looking modes). The DEM is not
only used for removing the elevation phase in DInSAR processing but also used for spatial constraints in STE and
SUE. In addition, considering that landslides generally occur in areas with severe spatiotemporal decorrelation, in
order to suppress these decoherence noises, DInSAR processing requires selecting interferometric pairs with
small spatiotemporal decorrelation based on a spatiotemporal baseline threshold as the input data for KFI‐4D.

In terms of data preprocessing, KFI‐4D requires the use of initial state vectors to obtain the initial 4‐D movements
at the first n epochs. As shown in Equation 4, STE requires the estimate of former n epochs to be the temporal
constraints. However, this cannot be achieved for the initial n epochs. Therefore, in the processing of the initial n
epochs in KFI‐4D, the traditional KFI method will be used for temporal constraints (J. Hu et al., 2013) combined
with the spatial constraints in Equation 2 to obtain the initial 4‐D movements. In the process of using the
traditional KFI method, it is generally necessary to obtain the 3‐D deformation rate and its variance‐covariance
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Figure 2. Schematic overview of the employed methods in this study. For detailed information on each step, please refer to Section 3.
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matrix to initialize the KFI method (J. Hu et al., 2013). In this study, the SBAS method is used to obtain landslide
movement rates on different orbits, and then combined with the surface parallel flow‐constrained strain model
(SPFS) (Zheng et al., 2023) to obtain the 3‐D movement rates and their variance‐covariance matrix for the
landslide, which are used for the initialization of the KFI method. It should be noted that in the process of SBAS
processing, in addition to obtaining landslide movement rates on different orbits, it is also possible to obtain
elevation residuals in interferograms. Therefore, in order to suppress the effects of elevation residuals on the KFI‐
4D method, the elevation residuals obtained from the SBAS process will be used to remove the elevation residual
phase in the original DInSAR interferometric phase during data preprocessing, reducing the impact of elevation
residuals on the KFI‐4D method.

In the processing of 4‐D movements, KFI‐4D first uses the initial state vector obtained during preprocessing to
estimate the initial 4‐Dmovements at the first n epochs based on the processing flow of the traditional KFI method
combined with the spatial constraint in Equation 2. Then, using the spatiotemporal constraint in Equation 10, STE
predicts the 4‐D movement at the next i th time and calculates its corresponding variance‐covariance matrix using
Equations 15 and 16. Next, KFI‐4D calculates the variance‐covariance matrix of the observation DL using
Equations 17 and 18 along with the variance‐covariance matrix of the previous estimated value, the predicted
value, and the projection vector H, and then uses Equation 1 to compute the Kalman filter gain matrix Kκ. After
that, KFI‐4D updates the predicted value at i th time using the Kalman filter gain matrix and the system obser-
vation L based on the spatial constraint SUE in Equation 11, obtaining the 3‐D movements at i th time. At the same
time, using the Kalman filter gain matrix Kκ, the projection vector H, and the variance‐covariance matrix of the
predicted value D−X̂,i, the variance‐covariance matrix of the estimated value DX̂,i can be calculated, which will be
used in the (i + 1) th of the Kalman filter dynamic processing flow to obtain the variance‐covariance matrix of the
predicted value and the Kalman filtering gain matrix for the next epoch. By following this process for each SAR
observation epoch, the 4‐D movements of the landslide can be obtained.

4. Results
4.1. Evaluation With Synthetic Data Sets

Compared to real data sets, synthetic data set. allow for greater control over the influence of various factors on
observations and enable the evaluation of computed results based on known correct outcomes. Thus, synthetic
data sets will be utilized in this section to assess the performance of the KFI‐4D method in obtaining 4‐D
movements and compare it with other methods. As noted in the introduction, current techniques for acquiring
4‐D movements of landslides are limited to the UAVSAR synchronous observation method (X. Hu et al., 2020)
and the Tikhonov regularization‐based approach (e.g., MSBAS‐3D) (Samsonov et al., 2020). However, the
UAVSAR‐based method is only applicable to UAVSAR environments and is unable to solve the under-
determined problem caused by asynchronous observations in multi‐platform SAR data fusion for obtaining 4‐D
movements. Moreover, its performance is equivalent to that of traditional 3‐D movement acquisition. Therefore,
this section mainly compares the KFI‐4D method with the Tikhonov regularization‐based method.

The procedure for generating the simulation is detailed in Text S1 of Supporting Information S1. Utilizing the 198
simulated interferograms from two orbits, both the Tikhonov regularization‐based method and the KFI‐4D
method were employed to derive 4‐D movements, which were subsequently compared with the simulated
original signals. The outcomes are depicted in Figure S4 of Supporting Information S1. Overall, the deformation
results acquired using both methods generally align with the landslide movement trend. However, concerning the
time‐series movement intricacies, the Tikhonov regularization‐based method results display substantial fluctu-
ations across all three deformation components, attributable to the impact of atmospheric and random noise (as
denoted by the red dashed box in Figure S4 of Supporting Information S1). In contrast, the KFI‐4D method yields
more robust 4‐D movements in terms of temporal evolution. Even under severe atmospheric and decorrelation
noise, the movement results exhibited no significant fluctuations when compared with the simulated signal, thus
more effectively revealing the landslide movement evolution process.

To quantify the disparities between the two methods, the results derived from the Tikhonov regularization‐based
method and the KFI‐4D method were individually differentiated with the simulated signal, and the deviations
were subjected to statistical analysis, as demonstrated in the histograms in Figure 3. It is evident that the Tikhonov
regularization‐based method significantly underestimates the eastward deformation component. As the LOS
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deformation represents a projection of 3‐D displacements, the northward and vertical deformation components
are consequently overestimated. Taking into account the landslide movement direction, it becomes apparent that
the deformation acquired using the Tikhonov regularization‐based method underestimates the actual deformation.
In comparison with the Tikhonov regularization‐based method, the KFI‐4D method markedly reduces the de-
viation of 4‐D movements and outperforms the Tikhonov regularization‐based method across all three compo-
nents. Upon calculating the RMSEs for both methods, it emerges that the KFI‐4D method attains RMSE values of
0.015, 0.006, and 0.003 m for the east, north, and vertical movement components, respectively. Relative to the
deformation results procured using the Tikhonov regularization‐based method, these values signify improve-
ments of 53.1%, 48.3%, and 59.0%, respectively. Consequently, it can be deduced that the KFI‐4D method
effectively mitigates the influence of atmospheric and random noise, thereby enhancing the monitoring precision
of 4‐D landslide movements.

4.2. Applications to the Hooskanaden Landslide, Oregon

The Hooskanaden landslide is a large‐scale landslide on the west coast of the US, which has persisted in a slow‐
moving state since its initial investigation in the early 1970s, experiencing multiple catastrophic events. To obtain
the 4‐D movements of the Hooskanaden landslide, we collected over 110 Sentinel‐1A/B data from July 2016 to
February 2019 before the catastrophic event occurred and processed them using KFI‐4D. During data pre-
processing, we set a 150 m spatial baseline and a 40‐day temporal baseline for interferogram selection, with the
final small baseline subset illustrated in Figure S5 of Supporting Information S1. However, it is worth noting that
due to the adjustment of Sentinel‐1A/B satellites, only four ascending SAR images were available from March–
October 2018, as shown in Figure S5a of Supporting Information S1. This resulted in multiple InSAR subsets on
the ascending track and also reduced the temporal resolution of InSAR monitoring. To remove the topographic
phase, we used the 30 m COPDEM to remove the InSAR topographic phase during data processing. Subse-
quently, the data for the two orbits were processed according to the workflow shown in Section 3.3 and Figure 2,
ultimately obtaining the 4‐D movements of the Hooskanaden landslide, as depicted in Figure 4.

As shown in Figure 4a, the 3‐D movement vectors indicate that the landslide predominantly moves southwest,
with slow creep occurring at the toe, middle, and rear sections. The head exhibits a maximum movement rate of
142 mm/yr, and the toe shows 117 mm/yr. The middle section, traversed by US Highway 101, experiences
significant deformation, reaching a maximum movement of approximately 100 mm/yr, which is smaller than the
rear section. Contrary to the results by Xu et al. (2020), our findings suggest a more significant movement in the
head and toe compared with the middle section. The discrepancy arises as Xu et al. (2020) primarily captured the
motion during the February 2019 landslide event. Differential analysis using LiDAR DEMs from 2014 to 2008
confirmed significant deformation at the head and toe during the slow‐moving stage (Xu et al., 2020), aligning
with our observations. Field investigations reveal visible scarp in the middle and rear sections, along with fault

Figure 3. Comparative histograms displaying differences in 4‐D movement results obtained using the KFI‐4D method
(orange columns) and the Tikhonov regularization‐based method (blue columns) across three directions: (a) eastward,
(b) northward, and (c) vertical.
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scarp and tension cracking at the rear (Alberti et al., 2020). The landslide movement occurred at the head and toe
during slow creep, while the movement generated by landslide events mainly occurred in the middle section,
indicating that the Hooskanaden landslide is controlled by multiple sliding surfaces (Xu et al., 2020). In the east,
north, and vertical components, the maximum movement rates are − 134 mm/yr, − 56 mm/yr, and − 39 mm/yr,
respectively (Figures 4b–4d). The horizontal movement significantly surpasses the vertical movement, sug-
gesting horizontal control, consistent with 3‐D movement results derived from differential LiDAR DEM pro-
cessing (Alberti et al., 2020). The gentle terrain likely contributes to the greater horizontal movement. The small
vertical movement at the toe supports this observation.

Figure 4. 4‐D movements of the Hooskanaden landslide. (a) Vectors of the average 3‐D movement rate, with arrows indicating the moving directions. The background
shows a shaded relief map generated from a LiDAR DEM. (b)–(d) represent the 3‐D movement rates of the east, north, and vertical components, respectively. (e–g)
show the time‐series 3‐D movements at points P1–P3 during 15 July 2016 to 18 February 2019 with the same color triangles as in (a) used to illustrate their locations.
The blue line represents the daily precipitation record obtained from a meteorological station (red mound) located 12 km away.
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Three points (P1, P2, and P3) were selected at the head and toe sections, areas of pronounced landslide movement.
Using the 4‐D movement field, their time‐series 3‐D movement curves are plotted (Figures 4e–4g)). The KFI‐
based 4‐D Hooskanaden landslide movements enhance temporal resolution (J. Hu et al., 2013). Since the 4‐D
movements are derived from multiple track observations and processed using the KF dynamic process,
compared to Xu et al.'s (2020) results from Sentinel‐1 data of T13 track, our results overcame the data limitation
in 2018. The missing data in T13 were supplemented by observations from T35. We obtained the movement
details in 2018, capturing a notable acceleration before the February 2019 event. P1 and P2 on the rear section
exhibited stability prior to the event, with significant acceleration at the end of 2018. Precipitation drove the
Hooskanaden landslide (Xu et al., 2020), showing acceleration during wet seasons (from November to April of
the following year). Different parts responded variably; P1 and P2 accelerated in the 2017 and 2019 wet seasons,
while P3 at the toe reacted to the annual wet season with significant deformation in 2018. Despite higher rainfall
in 2017, it did not lead to major disasters (Alberti et al., 2020). Rainfall alone inadequately explains landslide
movement and the associated risks.

In order to compare the differences between KFI‐4D and Tikhonov regularization‐based methods in obtaining 4‐
Dmovements, the 4‐Dmovements at points P1 and P2 were acquired and presented in Figure 5. It can be observed
that the Tikhonov regularization‐based method, like KFI‐4D, can capture the overall deformation trend of the
landslide. However, unlike the results obtained by KFI‐4D, the Tikhonov regularization‐based method exhibits
significant fluctuations, especially in the initial epochs. These fluctuations are particularly evident in the time
series of the eastward and vertical directions. Furthermore, influenced by these fluctuations, the cumulative
displacement obtained by the Tikhonov regularization‐based method displays a noticeable underestimation,
which is similar to the outcomes derived from synthetic data sets. In comparison to the results obtained by the
Tikhonov regularization‐based method, KFI‐4D effectively suppresses the impact of these fluctuations and ac-
quires stable 4‐D movements.

To quantify the differences in 4‐D movements obtained by the Tikhonov regularization‐based method and KFI‐
4D, the results obtained by these two methods were projected onto a third independent InSAR observation di-
rection (e.g., the data set of Track 108) and used for comparison with the temporal LOS movements obtained by
Track 108. It should be noted that the independent InSAR measurements obtained from the Track 108 data set
have a temporal difference of only one day between the other two orbits. Therefore, these results are relatively
suitable for comparison with the 4‐D movements acquired in this study. Subsequently, 10 random points were
selected on the Hooskanaden landslide, and the LOS temporal movements obtained by the three methods were
compared (as shown in Figure S6 of Supporting Information S1). It can be observed that the results obtained by
the Tikhonov regularization‐based method also exhibit significant fluctuations in most points. In contrast, the
KFI‐4D results are closer to those obtained by the third independent InSAR observation. The RMSEs between the
Tikhonov regularization‐based method and KFI‐4D results and the third independent InSAR observation results
at these 10 random points are summarized in Table 1. The average RMS of KFI‐4D at these 10 points is 6.2 mm,
while the average RMS of the Tikhonov regularization‐based method is 18.1 mm. Compared to the Tikhonov

Figure 5. 4‐D movements of the Hooskanaden landslide as determined by KFI‐4D (represented by dark and light green triangles) and the Tikhonov regularization‐based
method (depicted by yellow and red squares) at locations P1 and P2 (refer to Figure 4a for their positions).
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regularization‐based method, the improvement of KFI‐4D reached 65.7%.
Similarly, we calculated the RMS between the monitoring results obtained by
the KFI‐4D method and those from the Tikhonov regularization‐based
method with the Track 108 data sets for all pixels across the entire moni-
toring area (the statistical results are shown in Figure S7 of Supporting In-
formation S1). The analysis shows that the average RMS of the KFI‐4D
method's results is only 23 mm, whereas, in contrast, the RMS from the
Tikhonov regularization‐based method reaches 135 mm. This statistical result
indicates that, compared to the Tikhonov regularization‐based method, the
KFI‐4D method can better suppress the influence of potential errors during
the monitoring of landslide 4‐D movements, thereby achieving more reliable
4‐D movement measurements.

5. Discussions
5.1. The Superiority and Limitation of KFI‐4D Method

The primary objective of KFI‐4D is to address the underdetermined issue in the processing of 4‐Dmovements and
to obtain high‐resolution 4‐D movement fields of landslides using InSAR technology. The efficacy of the KFI‐4D
approach in mitigating monitoring noise in landslide monitoring and enhancing the accuracy of 4‐Dmovements is
illustrated through comparisons with conventional methods employing both real and synthetic data sets. During
processing, KFI‐4D necessitates the utilization of SAR observation data from diverse imaging geometries, which
not only mitigates the ill‐conditioned problem in InSARmonitoring (Zheng et al., 2023) and enhances monitoring
accuracy but also improves the temporal resolution of InSAR monitoring since distinct imaging geometries
possess varying observation times for landslides. Prior to the occurrence of catastrophic landslide events, land-
slides could exhibit significant acceleration signals (Xiong et al., 2020). Sentinel‐1, an SAR satellite capable of
routine global coverage, possesses a temporal resolution of approximately 12 days, rendering it insufficient for
the rapid detection of landslide acceleration signals. Some satellites, such as Lutan‐1 (LT‐1) (Jin et al., 2020) and
RADARSAT Constellation Mission (RCM) (Thompson, 2015), have enhanced the temporal resolution of InSAR
to 4 days or even higher by forming satellite constellations. By implementing the KFI‐4Dmethod proposed in this
study to jointly analyze Sentinel‐1 observations with higher temporal resolution SAR satellite observations, it
becomes feasible to not only acquire 4‐D movements of landslides but also to further refine the temporal reso-
lution of InSAR. Consequently, this will facilitate the timely detection and identification of abnormal acceleration
signals of landslides, ultimately reducing potential casualties and property losses.

Moreover, during the acquisition of the 4‐D movements of the Hooskanaden landslide using real data sets, the
Sentinel‐1 satellite adjustment influenced the availability of SAR observation images. Consequently, only 4
images were obtained on Track 35 between 15 March 2018, and 17 October 2018. This limitation not only
reduced the temporal resolution of InSAR observations but also rendered many deformation details unobservable
throughout 2018. As demonstrated by Xu et al. (2020)'s findings using Track 35 data, the deformation results
derived solely from Track 35 SAR imagery during 2018 closely resembled a straight line, complicating the
determination of changes in the Hooskanaden landslide movements during this period. In this study, the KFI‐4D
method, combined with Track 13 SAR data, successfully recovered the 4‐D movements from March–October
2018 (as depicted in Figures 4e–4g). These results clearly illustrate the impact of rainfall on landslide move-
ments during the 2018 wet season (November to April of the following year). In addition to temporary adjust-
ments of SAR satellites, the failure of SAR satellites also contributes to InSAR's inability to continuously monitor
specific targets. For instance, Sentinel‐1B failed in December 2021, rendering its SAR images unavailable for
future use in areas where it had been continuously observed. Specifically, the repeat interval in Europe has been
significantly reduced from 6 to 12 days. Consequently, these areas will rely solely on Sentinel‐1A for alternative
coverage. In the foreseeable future, satellites such as NISAR (NISAR, 2018) and ALOS4 PALSAR3 (Kankaku
et al., 2023) will be launched. Based on the KFI‐4D method proposed in this study, observations from other SAR
satellites can serve as a supplement in cases where a satellite (e.g., Sentinel‐1B) becomes unavailable. This
approach will help ensure the continuity of landslide monitoring.

However, it is important to note that KFI‐4D incorporates the slope aspect as a constraint in both STE (Equa-
tion 10) and SUE (Equation 12). Similar to other SPF‐based methods (Kang et al., 2023), when the slope aspect of

Table 1
RMSEs Between the Time‐Series LOS Movements Obtained From the
Projections of the 4‐D Movements Acquired by the Tikhonov
Regularization‐Based Method and KFI‐4D Onto 10 Random Points, and the
Time‐Series LOS Movements Acquired From the Track 108 Data Set
(Unit: mm)

Methods pp1 pp2 pp3 pp4 pp5 pp6 pp7 pp8 pp9 pp10

TikReg 5.2 20.4 9.9 35.7 19.2 26.1 19.1 6.3 29.2 10.0

KFI‐4D 3.4 3.9 4.8 5.2 6.5 7.9 6.0 6.5 9.3 8.0
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a landslide is oriented in the north‐south direction, the state transition matrix F in STE and the projection vectorH
in SUE may experience matrix ill‐conditioning, which significantly reduces the accuracy of 4‐D movement
estimations. The rationale behind introducing slope aspect constraints in KFI‐4D is to enhance InSAR's sensi-
tivity to north‐south deformation (J. Hu et al., 2014). Pixel Offset Tracking (POT) (Michel et al., 1999) and
Multiple Aperture InSAR (MAI) (Bechor & Zebker, 2006) are prevalent methods for obtaining azimuth defor-
mation. If azimuth deformation can be determined using POT or MAI, the slope aspect constraint can be elim-
inated from STE and SUE, circumventing the ill‐conditioning of the coefficient matrix induced by the slope
aspect constraint and obtaining the 4‐D movements of north‐south landslides. However, for current Sentinel‐1
data, the adoption of the TOPS imaging mode results in relatively low azimuth resolution, making it chal-
lenging to acquire azimuth deformation using Sentinel‐1 data. Consequently, this approach is restricted to cases
where high‐resolution SAR data are accessible (e.g., TanDEM‐X). Nevertheless, it is essential to highlight that
future NISAR and ALOS4 PALSAR3 missions will offer higher azimuth resolution SAR images, and since the
observations will be acquired in the L‐band, coherence is expected to be significantly improved, especially in
vegetated landslide areas. As such, it is valuable to further investigate the computation of landslide 4‐D move-
ments using KFI‐4D in conjunction with azimuth deformation obtained from NISAR or ALOS4 PALSAR3.

Moreover, KFI‐4D is not suitable for shallow landslides. The KFI‐4D technique estimates 4‐D landslide
movements using data from InSAR, POT, or MAI methods. However, unlike the large landslides in the study
area, shallow landslides, which are generally smaller in scale, often lack a significant slow‐moving phase in their
early stages. As a result, techniques such as InSAR, POT, or MAI typically fail to detect notable deformation
signals, rendering KFI‐4D ineffective. Similarly, KFI‐4D has limited applicability for rockslides, which rarely
exhibit a slow‐moving phase. Furthermore, for small‐scale slopes (length and width <100 m), even if some
displacement occurs during rainfall, it is difficult to capture significant deformation signals with Sentinel‐1 data
due to its relatively low spatial resolution, leading to KFI‐4D's failure. To address this issue, high‐resolution data
(such as TerraSAR/TanDEM‐X or ALOS2 PALSAR2) could be employed to capture slope deformation; how-
ever, the feasibility of these data sets requires further testing.

5.2. The Effect of Slope Aspect on Estimated 4‐D Movements

KFI‐4D method incorporates terrain constraints similar to other SPF‐constrained methods; therefore, the moni-
toring results are influenced by the slope aspect (Kang et al., 2023). In order to quantitatively evaluate the impact
of slope aspect on the KFI‐4D method, we simulated 3,650 synthetic data sets with different coherences and
varying landslide aspects using the method described in Section 4.1. These data sets were then solved using the
KFI‐4D method to obtain the 4‐D movements, and the RMSEs were calculated. The results shown in Figure 6
indicate that when the commonly used observation configuration of ascending track combined with descending
track is used, an increase of 44° or 221° in the slope aspect of landslides (as indicated by the black dashed lines in
Figure 6) significantly amplifies the RMSEs of the 4‐D movements. Considering that the average slope aspect in
the synthetic data sets is − 43°, the KFI‐4D method is unable to obtain reliable 4‐D movements when the slope
aspect is 1° or 178° due to matrix ill‐conditioning, which is consistent with the findings of Kang et al. (2023). It is
worth noting that this impact varies for the eastward, northward, and vertical components of the 4‐D movements.
The time‐series movement results of the eastward component are most significantly affected, followed by the
northward component, while the vertical component is least affected. However, for the northward component,
apart from the tendency for higher RMSEs near slope aspects of 0° or 180°, low coherence levels also decrease the
accuracy of solving the northward temporal movements when the slope aspect is near 90° (as indicated by the red
dashed line in Figure 6).

The impact of slope aspect is not only evident in the potential for ill‐conditioned coefficient matrices in terrain‐
constrained methods but also in the reduction of InSAR observation coherence (Kellndorfer et al., 2022), leading
to monitoring blind zones due to terrain layover or shadowing effects (Cai et al., 2022). These blind zones often
appear only in a certain direction of the orbit, while the other direction of the orbit remains unaffected by SAR
layover or shadow. Therefore, it is possible to consider using InSAR observations from the same direction (e.g.,
two ascending orbits from different SAR satellites) to obtain 4‐D movements. Here, we used a configuration of
two ascending tracks to simulate 3,650 synthetic data sets with different coherences and varying slope aspects, in
order to assess the impact of slope aspect on 4‐D movements. As shown in Figure 6, when using two ascending
tracks as the observation configuration, although there is a slight improvement in the temporal movement results
of the vertical component, the RMSEs of the other two components significantly deteriorate. This also indicates
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that using SAR observation data sets from the same flight direction can effectively address the issue of blind zones
caused by layover and shadowing, but due to the similar geometries of satellite observations from the same flight
direction, it further weakens the monitoring accuracy of 4‐D movements.

Left‐looking SAR observations are a novel SAR observation strategy that can effectively improve the results of
3D deformation monitoring (Zheng et al., 2023). When left‐looking SAR and right‐looking SAR are combined to
observe a target from one direction, there are also imaging geometric differences between the two observation

Figure 6. RMSEs of 4‐D movements obtained using different InSAR observation configurations based on the KFI‐4D method under different landslide slope aspect and
coherence conditions. The X‐axis represents the added slope aspect in the original slope direction, and the Y‐axis represents coherence.
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data sets, which provides an opportunity to improve the inability to use two LOS observations to obtain 4‐D
movements due to layover or shadow. To this end, we used a configuration of right‐looking SAR from one
ascending track and left‐looking SAR from one descending track as the observation setup to simulate 3,650
synthetic data sets with different coherences and varying slope aspects, in order to assess the impact of slope
aspect on 4‐D movements. The results, as shown in Figure 6, demonstrate that the combination of right‐looking
SAR and left‐looking SAR significantly improves the RMSEs of 4‐D movements compared to the other two
observation configurations. Under the condition of coherence greater than 0.3, the impact of slope aspect on 4‐D
movements is reduced to within 10 mm. Even when the slope aspect is at 0° or 180°, the RMSE of the eastward
component is less than 15 mm. Therefore, this also indicates the potential of using left‐looking SAR observations
in conducting 4‐Dmovements. In the upcoming SARmissions, both NISAR and ALOS4 PALSAR3 are equipped
with left‐looking observation modes. Especially for NISAR, in order to improve the coverage in the Antarctic
region, it will use the left‐looking observation mode in most regions (NISAR, 2018). This will provide an op-
portunity to mitigate the impact of the slope aspect on the solution of 4‐D movements in the future, and help
further expand the application scenarios of 4‐D movements based on InSAR technology.

Furthermore, it is noteworthy that the European Space Agency (ESA) is planning to develop a novel InSAR Earth
observation mode based on the Harmony mission to capture 3‐D surface deformation (Dekker et al., 2019). This
plan involves the use of two additional satellites, Harmony‐A and Harmony‐B, in conjunction with the future
Sentinel‐1C or Sentinel‐1D satellites. Sentinel‐1C/D will act as the illuminator, while Harmony‐A/B will function
as a receive‐only satellite (Dekker et al., 2019). By utilizing this innovative joint observation mode, the Harmony
mission is also expected to overcome the effects of the slope aspect, enabling the acquisition of 4‐D surface
deformation.

5.3. Blocks Interaction Dynamics Revealed by InSAR‐Derived 4‐D Movements

Landslide movement often involves the interaction of multiple blocks rather than a single mass moving inde-
pendently (Ferrari et al., 2011; Tomás et al., 2014). The combined effects of these blocks can lead to either
accelerated or stable landslide behavior. Therefore, investigating the interaction dynamics between multiple
blocks during landslide movement holds significant importance in gaining a deeper understanding of landslide
mechanisms and facilitating early warning and mitigation efforts. However, the interaction of multiple blocks can
introduce complexity in landslide modeling and research (Ferrari et al., 2011). Traditional field observation
methods only provide sparse measurements of the landslide with low spatial resolution, limiting the ability to
achieve comprehensive observations of landslides.

Strain is a measure of deformation experienced by an object under external forces. By using strain tensors, we can
derive multiple strain invariants, which serve as essential tools for understanding the interaction between different
blocks (Mehrabi, 2021). Utilizing the proposed KFI‐4D, the 4‐D movements of the Hooskanaden landslide were
derived using ascending and descending Sentinel‐1 data acquired between July 2016 and February 2019 prior to
the occurrence of the catastrophic event. This enables us not only to calculate the strain invariants from the 3‐D
movements but also to further explore the dynamics of strain invariants based on the 4‐D movements (further
details regarding the calculation of strain invariants from the obtained 4‐D movements are provided in Text S2 of
Supporting Information S1). Here, the dynamics of dilatation and maximum shear strain of the Hooskanaden
landslide are derived as a medium to further investigate the block interaction dynamics preceding the catastrophic
event.

5.3.1. 4‐D Movements‐Derived Dilatation Dynamics

The Hooskanaden landslide's 3‐D movement rate allows the inversion of strain invariants. Figure 7a presents the
calculated dilatation rate field derived from the 3‐D movement rate via Equation S5 of Supporting Informa-
tion S1, revealing distinct blocks based on dilatation patterns. The Hooskanaden progress report defines Internal
Scarps (IS) positions marking blocks and profile A‐A’ (Parker, 1979). Extracting dilatation results along profile
A‐A' and comparing them to IS positions (Figure 7b), we find a maximum dilatation rate of 2.1 × 10− 3/yr and
minimum compression rate of − 1.3 × 10− 3/yr along section A‐A'. Notably, IS1, IS3, IS4, and IS5 exhibit
alternating dilatation and compression. Hence, these IS positions demarcate block boundaries. Most prominently,
IS3 and IS4 show significant variations. At IS3, the compression rate increases from − 1.1 × 10− 3/yr to
1.4× 10− 3/yr, and at IS4, the dilatation rate decreases from 1.7× 10− 3/yr to − 0.8× 10− 3/yr. In contrast, unlike the
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Hooskanaden report, our results show minimal dilatation differences near IS2, suggesting that it might not be a
block boundary. Instead, a substantial dilatation difference was observed between IS1 and IS2, resulting in a
sudden decrease from 1.2 × 10− 3/yr to − 1.3 × 10− 3/yr. This leads us to hypothesize that this discrepancy could

Figure 7. Strain invariant fields derived from the movement rates. Panels (a) and (e) show dilatation and MSS rate fields, respectively, plotted on the LiDAR DEM‐
generated shaded relief map. The black and green dashed lines indicate the locations of the profile and internal scarps, respectively, extracted from the progress report of
the Hooskanaden landslide (Parker, 1979). Panels (b) and (f) present the dilatation and MSS rates along profile A‐A’, respectively, with elevation and inferred basal
surface information sourced from the progress report (Parker, 1979). Panels (c) and (g) illustrate the time‐series movements‐derived transient dilatation and MSS fields,
respectively. Panels (d) and (h) display the time‐series transient dilatation and MSS rate along profile A‐A’, respectively. The strain invariant fields are all
dimensionless.
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potentially signify the presence of a novel slip surface, indicated by the red dashed line in Figure 7b. The existence
and distribution of distinct blocks within the Hooskanaden landslide explain differences in our results compared
with those of Xu et al. (2020). Notably, Figure 7a's dilatation rate field shows substantial dilatation in the middle
section, reaching the maximum dilatation rate of 2.1 × 10− 3/yr. This block accumulates stress during the pro-
longed slow‐moving process, possibly explaining significant movement during the February 2019 event.

Utilizing the 4‐D movement field, we derived the time‐series transient dilatation rate field of the Hooskanaden
landslide (Figure 7c). We also extracted time‐series transient dilatation along profile A‐A' (Figure 7d), revealing a
distinct boundary between blocks. Like the results in Figure 7b, the transient dilatation rate along A‐A' does not
exhibit a demarcation line at IS2, but a prominent boundary emerges on the inferred new slip surface. These
observations affirm that IS1, IS3, IS4, IS5, and the inferred new slip surface indeed serve as boundaries between
distinct blocks, while IS2 no longer functions as a slip surface. Long‐term movement and the occurrence of
catastrophic events spanning decades could be responsible for this shift in IS2's role as a slip surface. Friction
along the slip surface stands as a critical parameter governing block movement rate and stability (W. Hu, Huang,
et al., 2019). In the event of a catastrophic incident, the rapid movement of a sizable mass of landslide material
may initiate a series of friction‐reducing mechanisms on the slip surface, such as thermal decomposition of basal
carbonates (Anders et al., 2000) or recrystallization (W. Hu, Huang, et al., 2019). The catastrophic events wit-
nessed in the Hooskanaden landslide over the past few decades might have triggered friction‐reducing mecha-
nisms. Consequently, the friction on the slip surface decreased, leading to IS2's transition from a slip surface.

Temporal dilatation patterns show blocks mostly sustain a consistent trend of dilation or compression throughout
the observation period, influenced by adjacent blocks (Figure 7d). When the central block experiences dilatation,
adjacent blocks exhibit compression, and vice versa. However, distinct blocks do not always follow a uniform
pattern over time (Figure 7d). Changes can swiftly transition from dilatation to compression or vice versa,
affecting adjacent blocks. As an illustration, consider the block positioned between IS3 and IS4. Over the
observation period, the predominant trend was dilation, with a notable maximum transient dilation rate of
2.4 × 10− 2/yr. However, there are instances where it momentarily shifts to compression, with the lowest transient
compression rate recorded at − 0.8 × 10− 2/yr. The dilatation boundary of each block exhibits relative stability
throughout the time series without crossing the slip surface. This underscores that during the slow‐moving phase,
block movements are not controlled by a single basal surface but by multiple slip surfaces. For instance, at IS5,
dilatation sometimes crosses the boundary (Figure 7d). Parker (1979) reported that IS5 does not intersect the
inferred basal surface. This discrepancy may explain why the block in that area is intermittently influenced by the
basal surface.

5.3.2. 4‐D Movements‐Derived Maximum Shear Strain Dynamics

The Maximum Shear Strain (MSS) rate field of the landslide can be derived using Equation S6 of Supporting
Information S1, as depicted in Figures 7e and 7f. The time‐series transient MSS rate obtained from the 4‐D
movement field offers a novel perspective on comprehending the landslide's motion dynamics (Figures 7g and
7h). Similar to the time‐series dilatation results, the temporal MSS pattern also reveals distinct boundaries among
various blocks, aligning with the distribution of boundaries observed in the dilatation field. However, it's notable
that the boundaries in the temporal MSS pattern appear somewhat blurred compared to those identified in the
dilatation field. This phenomenon arises due to the interconnectedness of adjacent blocks' MSS when significant
MSS values emerge. The region displaying the most pronounced dilatation and MSS within the landslide is the
block positioned between IS3 and IS4. Remarkably, this block's location corresponds to where the most extensive
movement occurred during the February 2019 event. Temporal analysis of the time‐series transient MSS rate
revealed a substantial annual increase in MSS for this block during the wet season (November to April of the
following year, Figure 7h), accompanied by noteworthy dilatation (Figure 7d). This emphasizes that both MSS
and the dilatation field of the Hooskanaden landslide exhibit considerable sensitivity to rainfall, paralleling the
findings of Xu et al. (2020). Particularly significant is the observation that one month before the February 2019
event, specifically from January 9th to 13th, the most prominent dilatation andMSS during the observation period
were evident (marked by black dashed circles in Figures 7d and 7h). The maximum transient dilatation rate surged
to 2.4 × 10− 2/yr, while the peak transient MSS rate escalated to 1.8 × 10− 2/yr. Remarkably, this timeframe
witnessed a pronounced interconnection between the MSS of the central block and its neighboring blocks, with
the transient MSS rate of the adjacent block also reaching 0.9 × 10− 2/yr. This phenomenon has the potential to be
a significant causal factor and a pivotal indicator leading to the onset of the February 2019 event.
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It is noteworthy that the variation in landslide friction occurs not only during high‐speed movements of landslides
but also during the slow‐moving phase (Zhang et al., 2023). When the effect of pore‐water pressure sufficiently
counteracts the friction‐strengthening influence, friction weakening arises. This phenomenon can propel the
landslide's movement velocity beyond its potential upper limit, resulting in disasters (Zhang et al., 2023). The
abnormal signals in transient MSS and dilatation rate observed between January 9th and 13th could illustrate this
process. Exploring this process in‐depth will contribute to improved landslide early warning systems. However, a
comprehensive understanding of the mechanics underlying abnormal signal action necessitates the integration of
more in situ testing data and subsurface field observations (Ye et al., 2024a, 2024b).

6. Conclusions
The utilization of InSAR‐derived 4‐D movements as a high‐resolution and intuitive product for monitoring
landslides greatly contributes to the advancement of our understanding and research in this field. In this study, we
propose the KFI‐4D method by enhancing the state transfer equation and state update equation of the Kalman
filter and incorporating spatiotemporal constraints. This method effectively addresses the challenge of under-
determination in obtaining 4‐D movements and broadens the application scope of InSAR technology for
acquiring 4‐D movements. Synthetic data sets and the practical application results of the Hooskanaden landslide
demonstrate that the KFI‐4D method successfully mitigates the influence of InSAR observation errors during the
acquisition of 4‐D movements. Compared to the conventional Tikhonov regularization‐based method, the KFI‐
4D method showcases a remarkable improvement of over 50% in terms of RMSE. Moreover, the KFI‐4D method
dynamically estimates parameters during computation, enabling the incorporation of SAR observations from
other orbits to supplement continuous landslide monitoring tasks and enhance temporal resolution. Regarding the
potential limitations of using terrain as a constraint in the implementation of the KFI‐4Dmethod, we evaluated the
impact of terrain on estimated 4‐D movements using synthetic data sets. Our findings reveal that when acquiring
4‐D movements through ascending and descending track data, the east and north components of the movements
fail to produce reliable results when the slope aspect reaches 0° or 180°. However, when examining the influence
of slope aspect on the acquisition of 4‐D movements using left‐looking data, we discover that the KFI‐4D method
effectively overcomes the impact of slope aspect and obtains dependable 4‐D movements when introducing left‐
looking data with a coherence greater than 0.3. Considering the upcoming adoption of a left‐looking mode by the
NISAR satellite, the future application and monitoring performance of the KFI‐4D method hold great promise for
further enhancements.

By utilizing the KFI‐4D method and Sentinel‐1A/B data from ascending and descending tracks, we successfully
obtained the 4‐D movements of the Hooskanaden landslide from July 2016 to the catastrophic event in February
2019. Our findings highlight variations in the response of different sections of the landslide to rainfall. Leveraging
high‐resolution 4‐D movement data, we inferred the strain invariants dynamics of the landslide: (a) The distri-
bution and activity of blocks and slip surfaces can be assessed; (b) Whether the kinematics of distinct blocks are
governed by autonomous slip surfaces or a common basal surface can be assessed; (c) The sensitivity of various
blocks to the trigger can be evaluated, with anomalous strain invariant signals potentially serving as vital in-
dicators for landslide early warning before potential catastrophic events. Future satellites such as NISAR, ALOS4
PALSAR3, and Sentinel‐1C hold the promise of providing additional InSAR observations for landslide dynamics
research. Implementing the KFI‐4D method based on these advancements can further improve the temporal
resolution of InSAR‐based landslide monitoring. Consequently, this advancement has the potential to enable the
identification of abnormal signals in strain invariants prior to the occurrence of catastrophic events, thereby
facilitating efforts in landslide early warning.

Data Availability Statement
Sentinel‐1 SAR data sets can be downloaded from the Alaska Satellite Facility https://search.asf.alaska.edu/. For
Sentinel‐1 ascending data set, search for L1 SLC” File Type, “IW” BeamMode, “Ascending” Direction, Path #35
and Frame #137. For Sentinel‐1 descending data set, search for “L1 SLC” File Type, “IW” Beam Mode,
“Descending” Direction, Path #13 and Frame #453. The Copernicus DEM and LiDAR DEM are available
through https://opentopography.org/; choose “FIND DATA MAP” from the “DATA” menu and then enter the
minimum and maximum latitude and longitude as in Figure 1. The Copernicus DEM is collected in “Global and
Regional DEM” catalog, and the LiDAR DEM is collected in “NOAA” catalog.
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