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A B S T R A C T   

The prediction of landslide deformation is an important part of landslide early warning systems. Displacement 
prediction based on geotechnical in-situ monitoring performs well, but its high costs and spatial limitations 
hinder frequent use within large areas. Here, we propose a novel physically-based and cost-effective landslide 
displacement prediction framework using the combination of Multi-Temporal Interferometric Synthetic Aperture 
Radar (MT-InSAR) and machine learning techniques. We first extract displacement time series for the landslide 
from spaceborne Copernicus Sentinel-1A SAR imagery by MT-InSAR. Using wavelet transform, we then 
decompose the nonlinear displacement time series into trend terms, periodic terms, and noises. The advanced 
machine learning method of Gated Recurrent Units (GRU) is utilized to predict the trend and periodic dis-
placements, respectively. The modeling inputs for trend and periodic displacement predictions are determined by 
analyzing their corresponding influencing factors. The total displacements are finally predicted by summing the 
predicted displacements of trend and periodic items. The Shuping and Muyubao landslides, identified as seepage- 
driven and buoyancy-driven, respectively, in the Three Gorges Reservoir area in China are selected as case 
studies to evaluate the performance of our methodology. The prediction results demonstrate that machine 
learning algorithms can accurately establish the nonlinear relationship between the landslide deformation and its 
triggers. GRU outperforms the algorithms of Long Short-Term Memory networks and Kernel-based Extreme 
Learning Machine, and the Adam algorithm can effectively optimize the model hyperparameters. The root mean 
square error and mean absolute percentage error are 3.817 and 0.022 in Shuping landslide, and 5.145 and 0.020 
in Muyubao landslide, respectively. By integrating the advantages of MT-InSAR and machine learning tech-
niques, our proposed prediction framework, considering the physics principles behind landslide deformation, can 
predict landslide displacement cost-effectively within large areas.   

1. Introduction 

Landslides are among the most destructive natural hazards. They 
cause numerous casualties and huge property loss. The average number 
of annual fatalities is >4, 300 worldwide (Froude and Petley, 2018). 
Nearly $19.8 billion is invested to deal with the damage caused by 
landslide disasters each year, which accounts for 17% of the annual loss 
caused by the global natural disasters (Haque et al., 2016). As reported 
by the Ministry of Natural Resources of the People’s Republic of China, 

3, 919 landslides were among the 5, 659 geological disasters observed in 
2022 in China (https://m.mnr.gov.cn/sj/zrzyzygb/index.html, accessed 
on Jan. 11, 2024). On July 23, 2019, 43 deaths, 9 missing people and an 
economic loss of $29 million were caused by a catastrophic landslide in 
Shuicheng, Guizhou province of China. 

The United Nations International Strategy for Disaster Reduction 
addresses early warning systems as powerful tools to reduce risks in a 
wide range of fields including landslides (Intrieri et al., 2019). Imple-
menting Landslide Early Warning Systems (LEWS) is a challenging task 
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that has attracted numerous efforts worldwide (Chae et al., 2017; Xu 
et al., 2020). Monitoring movements, environmental factors and 
geotechnical parameters play significant roles in supporting the devel-
opment of LEWS. The conventional in-situ ground-based monitoring 
methods, such as fiber optic, piezometers, extensometers, and in-
clinometers, provide information for the development and imple-
mentation of LEWS (Ju et al., 2020; Fan et al., 2020). 

Displacement is direct evidence of the state of landslide activity, and 
it is also the most primary alert used in LEWS (Pecoraro et al., 2019). 
Global Navigation Satellite System (GNSS) can measure landslide 
movement at high accuracy, while its application is limited by high cost 
and its point based spatial extent. For example, in the Three Gorges 
Reservoir Area (TGRA) in China, the frequent occurrence of new land-
slides and reactivation of already existing landslides are mainly caused 
by reservoir impoundment. There are currently 5386 known landslides 
in this region and only <300 of them being monitored by specialized 
equipment (Cheng, 2014). Statistics of worldwide fatal landslides show 
that the landslide-induced casualties mainly occur in less developed 
regions (Froude and Petley, 2018), where chances are high that local 
governments cannot afford the high cost of landslide monitoring and 
early warning. Thus, there is an urgent demand for developing meth-
odologies and techniques contributing to cost-effective LEWS. 

With the rapid development of earth observation techniques, LEWS 
are entering a new era (Intrieri et al., 2018; Casagli et al., 2023). 
Spaceborne Interferometric Synthetic Aperture Radar (InSAR) has the 
capability of measuring ground surface deformation over wide areas 
with centimeter accuracy (Zebker et al., 2010). Due to the spatio- 
temporal decorrelation problem of InSAR, the Multi-Temporal (MT)- 
InSAR method has been proposed and developed, which helps provide 
reliable time series of displacements for a wide range of settings (Ferretti 
et al., 2001; Berardino et al., 2002; Ferretti et al., 2011). In addition, due 
to the global coverage and open source of Sentinel-1 A imagery, MT- 
InSAR has become a geodetic method of choice for monitoring pur-
poses in reducing landslide risk (Casagli et al., 2023). At present, MT- 
InSAR is popular in landslide detection (Rosi et al., 2018; Zhao et al., 
2018; Zhang et al., 2020), landslide susceptibility mapping (Carla et al., 
2016; Ciampalini et al., 2016; Devara et al., 2021), and landslide 
monitoring (Hu et al., 2020; Wasowski and Pisano, 2020; Xia et al., 
2022). However, there are still only a few studies on the application of 
MT-InSAR in the context of landslide early warning. 

Landslide deformation prediction is an important part of LEWS 
(Sassa et al., 2009; Intrieri et al., 2019). The proposed prediction models 
can be divided into two categories: data-driven and physically-driven. 
Physically-driven models forecast landslide events through mechanics 
principles and geotechnical parameters (Helmstetter et al., 2004). These 
models perform accurately, but their implementation is complex and 
difficult (Thiebes et al., 2014; Yang et al., 2019). The data-driven models 
are more attractive due to their accurate prediction and simple imple-
mentation (Zhou et al., 2018a). Machine learning (ML) have strong 
nonlinear fitting capabilities. Previous literature has demonstrated that 
ML methods can achieve excellent performance in data-driven modeling 
(Cao et al., 2016; Hu et al., 2021; Peng et al., 2024). The common 
methods utilized in landslide displacement prediction mainly include 
artificial neural network (Xu and Niu, 2018; Yang et al., 2019), Support 
Vector Machine (Cao et al., 2020; Han et al., 2021), Extreme Learning 
Machine (Deng et al., 2021), and Long Short-Term Memory (LSTM) 
networks (Yang et al., 2019). 

Due to the dynamic and nonlinear characteristics of landslide 
deformation, accurate prediction of abrupt deformation, though chal-
lenging, is extremely important. It is required to establish the dynamic 
relationship between landslide displacement and its triggers (Mohanty 
et al., 2021). Gated Recurrent Units (GRU) algorithm is an advanced 
algorithm, which has been successfully applied in various fields (Zhang, 
2021; Jiang et al., 2022; Zheng et al., 2022). The prediction accuracy of 
GRU is sensitive to its hyperparameters. Adaptive Moment Estimation 
(Adam) is a novel stochastic optimizer that can effectively solve the 

global optimization problem with large-scale hyperparameters, strong 
noise, and sparse gradient (Yin et al., 2021). It can be utilized to opti-
mize the hyperparameters of the GRU model to accelerate the conver-
gence speed and improve the training effect. 

In this study, two reservoir landslides named Shuping landslide and 
Muyubao landslide in TGRA are selected as case studies. Based on 37 
Sentinel-1A images from 10/03/2016 to 09/13/2017, the temporal and 
spatial pattern of displacement fields in both landslides are retrieved 
using MT-InSAR technique. Both landslides are characterized in tem-
poral and spatial deformation. Based on the relationship analysis be-
tween landslide ground movement and the influencing factors, 
dominating factors are selected as inputs to construct the GRU 
displacement prediction model. We attempt to achieve cost-effective 
landslide monitoring and displacement prediction framework for 
LEWS by combining MT-InSAR and ML techniques. 

2. Study areas 

The Three Gorges Reservoir Area (TGRA) in China is located between 
Chongqing municipality and Yichang City in Hubei Province. The total 
bank length of the Yangtze River is about 660 km. The TGRA has a wet 
subtropical climate, while Summer is the season of concentrated rainfall. 
The TGRA began to impound water in 2003, which reached a water level 
of 175 m in 2008. Since then, the reservoir level fluctuation has been 
periodically regulated between 145 m–175 m with a sequence of stages 
(Fig. 1), including rising, high reservoir water level (RWL), slow draw-
down, rapid drawdown, and low RWL. Landslide acceleration or failure 
can be easily triggered in the bank slope whose hydrogeological con-
ditions was changed. For example, the first impoundment to 135 m and 
172 m induced the failure of Qianjiangping landslide and Gongjiafang 
landslide, respectively. The Shuping landslide and Muyubao landslide 
has accelerated deformations since the first impoundment in 2003. 

2.1. Shuping landslide 

The Shuping landslide is located 47 km away from the Three Gorges 
Dam, in the Zigui County, Hubei Province in TGRA (30◦59′37″N, 
110◦37′00″E) (Fig. 2). The Mudstone and siltstone with marl compose 
the main sliding mass material (Fig. 2e). The plane is fan-shaped with 
two gullies as the side boundaries. The altitude of the boundaries is 
between 60 m and 400 m above sea level (a.s.l.). The area of the Shuping 
landslide is about 5.5 × 105 m2, while the volume is 2750 × 104 m3 

(Fig. 2c). Shuping landslide is currently active, and the deformation 
mainly occurs in the eastern and middle parts (Song et al., 2018). Upon 
the potential failure, it could break the 620 acres of orange forest and 
800 m of roads on the landslide. The Yangtze River shipping and the 
residents near the bank would also be endangered by the waves gener-
ated by a potential landslide failure. 

2.2. Muyubao landslide 

The Muyubao landslide is also located in the Zigui County 
(31◦01′59”N, 110◦29′57″E) (Fig. 2). It has developed in a dip slope with a 
chair-like shape in the plane. The average slope of the landslide is 20◦, 
while the attitude of which varies between 120 m to 425 m a.s.l.. The 
total volume of the Muyubao landslide is 9.0 million m3. The detailed 
characteristic description of Muyubao landslide can be found in Zhou 
et al. (2020). Once the current movement develops into a rapid failure, 
the sliding mass would threaten about 140 households and 500 people 
lived on the landslide, as well as the ships in the Yangtze River (Huang 
et al., 2020). 

2.3. SAR Data 

Sentinel-1 is a dual-satellite constellation imaging global land and 
ocean. This mission provides C-band SAR data which is freely available 
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and suitable for geohazard deformation monitoring. In this study, 37 
ascending images from March 10th, 2016 to September 13th, 2017 are 
acquired from ESA (Fig. 3). The Precise Orbit Ephemerides and digital 
elevation model obtained by Shuttle Radar Topography Mission are 
applied to eliminate the noise and error to improve monitoring accuracy 
of MT-InSAR. The reservoir water level is collected by Yangtze River 
Water Conservancy Commission and the precipitation of Zigui County is 
collected from China Meteorological Administration. 

3. Methodology 

3.1. Overall approach of MT-InSAR-driven displacement prediction 
framework 

Our proposed MT-InSAR-driven displacement prediction approach 
consists of five steps (Fig. 4): a) Extract the landslide displacement using 
MT-InSAR method from Sentinel-1A images (Details in Section 3.2); b) 
Interpolate the extracted displacement data to a same time interval, and 
decompose them into trend term, periodic term, and noise using wavelet 
transform (Details in Section 3.3); c) Train the machine learning pre-
diction models for periodic and trend term seperately (Details in Section 
3.4); d) Predict the total displacement and verify the model performance 
(Details in Section 3.5). 

3.2. Displacement extraction using MT-InSAR 

The Multi-temporal InSAR (MT-InSAR) techniques provide an 
effective solution for monitoring slow movements of the Earth’s surface 
through processing multiple collections taken over time (Motagh et al., 
2013; Shi et al., 2018; Bekaert et al., 2020; Zhou et al., 2022a). But its 
monitoring effectiveness varies with radar wavelength, satellite revisit 
time, and radar scattering characteristics. The Small Baseline Subset 
(SBAS) method is a popular method with excellent monitoring accuracy 
and spatial coverage density (Berardino et al., 2002; Li et al., 2022; 
Wang et al., 2023). In this study, interferometric processing is conducted 
by LiCSAR (Morishita et al., 2020). Subsequently, the landslide 
displacement is obtained using Stanford Method for Persistent Scatterers 
Multi-Temporal InSAR (StaMPS-MTI). In the SBAS implementation of 
StaMPS-MTI (Hooper, 2008), the targets whose filtered phase shows 
slow decorrelation over short time intervals are selected for time-series 

analysis. The candidate targets are selected based on a threshold (0.6) 
for the amplitude difference dispersion, which is the standard deviation 
of the amplitude difference between master and slave over the mean 
amplitude (Lubitz et al., 2012). Moreover, a three-dimensional phase 
unwrapping method is utilized to achieve more robust phase unwrap-
ping. Detailed information about StaMPS-MTI method can be found in 
Hooper et al. (2004, 2007) and Hooper and Zebker (2007). 

The original ground displacement obtained by MT-InSAR approach 
is along the direction of Line-of-sight (LOS) of radar satellite. To 
compare the monitoring results with GNSS method for validation anal-
ysis, the LOS displacement needs to be projected into the landslide 
movement direction. The movement directions of Shuping and Muyubao 
landslides are obtained through field investigation, and are N11◦E and 
N16◦E, respectively. Combining SAR image and slope geometry pa-
rameters, a popular method for projecting LOS displacement into the 
steepest slope direction has been proposed by Hilley et al. (2004). Here, 
based on this method and the obtained parameters of landslide move-
ment direction, we project the LOS displacement into the main sliding 
direction. 

3.3. Displacement decomposition 

Landslide deformation is affected by a combination of internal 
geological conditions and external triggers. The internal geological 
conditions of a landslide encompass the geological elements which 
impact the initiation, evolution, and stability of a landslide. These ele-
ments mainly include the topography, the material of the sliding mass, 
the stratigraphy, and the hydrological conditions, etc.. The displacement 
primarily controlled by internal geological conditions shows a mono-
tonic increase over time at low frequencies, defined as trend displace-
ment. Conversely, the displacement induced by triggering factors, such 
as rainfall and reservoir level fluctuations, exhibits fluctuations at high 
frequencies, which is defined as periodic displacements. The time series 
of landslide displacement can be decomposed as trend displacement, 
periodic displacement and noise based on the principle of time series. 
The formula can be represented as follows: 

Dt = Tt +Pt +Nt (1)  

where Dt is the total displacement obtained by monitoring, Tt is the 

Fig. 1. Water level and precipitation in the Three Gorges Reservoir area, China.  
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trend displacement, Pt is the periodic displacement, and Nt is the noise. 
Sentinel-1 satellite covers the study area with a revisit time of 12 days 
with the exception in the beginning of 2016, when the temporal baseline 
of images was 24 days. This makes the time intervals of the extracted 
displacements irregular. We assume that the deformation velocity is 
constant between two adjacent monitoring. The linear interpolation is 
performed for the 24-day monitoring intervals to make the whole 
displacement sequence with the same interval of 12 days. 

Wavelet decomposition algorithm (WD) can provide better localized 
features in both time and space domains. The discrete wavelet decom-
position algorithm proposed by Mallat (1999) is an effective algorithm 

and popular in landslide displacement decomposition (Haghshenas 
Haghighi and Motagh, 2016; Guo et al., 2020; Li et al., 2020). Here, we 
use the one-dimensional denoising method of WD to remove the noise. 
Fourth-order Daubechies function (DB 4) is selected as the basis function 
of the discrete WD algorithm. 

3.4. Prediction modeling using GRU 

The deformation evolution of landslides is a nonlinear process 
controlled by various internal and external factors. In our proposed 
displacement prediction method, we use historical displacements for 
training machine learning algorithms to establish the nonlinear rela-
tionship between the landslide deformation and its triggers. The trained 
models are applied to predict future displacements. GRU is an advanced 
machine learning algorithm with strong nonlinear predictive ability. 
The factors affecting the displacement of the period item and the trend 
item are different. We determine the inputs for both models with 
consideration of the physics principles behind landslide deformation. 

Fig. 2. (a) Location map of TGRA, with mentioned landslides’ locations, (b) Landform of Muyubao landslide, (c) Landform of Shuping landslide, (d) One profile of 
Muyubao landslide, and (e) One profile of Shuping landslide. 

Fig. 3. Time span of sentinel-1A imagery.  
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3.4.1. The principle of GRU 
The GRU and LSTM algorithms are both variants of the convolutional 

neural network (RNN), and GRU is developed on the basis of LSTM 
neural networks. LSTM is designed to overcome the limitation of RNN by 
using memory cells. Memory cells have the self-connections that stored 
the network temporal state (ct) and controlled through three gates 
named as: input gate (it), output gate (ot) and forget gate (ft) (Fig. 5a). 
The input gate and output gate are used to control the flow of memory 
cell input (xt) and outputs (ht) into the rest of network. The forget gate is 
added to the memory cell, which passes the output information with 
high weights from the previous neuron to the next (Shahid et al., 2020). 
In addition, if the output unit has high activation, then it will pass the 
information to next neuron. Otherwise, input information with high 
weights resides in memory cell. 

GRU makes the model more simplified and efficient by combining 
the forget gate and input gate of the LSTM into the update gate, and the 

memory unit and the hidden layer into the reset gate (Fig. 5b). The reset 
gate determines which information from the previous steps is to be 
forgotten which is similar to the function served by the forget gate in 
LSTM. However, GRU determines the to-be-forgotten information ac-
cording to the past time steps (in the hidden state (ht-1)) which is 
different from LSTM. The update gate is applied to determine how much 
of the previous hidden state and how much of the new input should be 
incorporated into the current hidden state. The performance of GRU is 
sensitive to its hyperparameters. Adam is a gradient-based optimization 
algorithm which combines ideas from both gradient descent and mo-
mentum (Zhang, 2021; Jiang et al., 2022). Here, Adam is applied to 
optimize the GRU hyperparameters for accelerating the training process 
and improve the generalization performance. 

3.4.2. Determination of model inputs 
Precipitation is the primary external triggering of landslide 

Fig. 4. Framework of the displacement prediction approach: (a) Displacement extraction using MT-InSAR, (b) Displacement decomposition, (c) Model training and 
(d) Model validation. 

Fig. 5. Conceptual illustrations of (a) LSTM and (b) GRU algorithms, the green circle refers to pointwise operations. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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deformation. Reservoir impoundment of Laxiwa hydropower station 
destabilized the toppling Guobu slope. Deformation accelerations 
coincide with the artificial operations. However, after the reservoir 
water level became leveling-off in 2015, the movements exhibited 
evident seasonal variations in phase with cyclic rainfall (Shi et al., 
2021). In TGRA, Zigui County is in the rainfall center, receiving up to 
1,200 mm of the highest rainfall annually. Previous studies argued that 
landslide deformations in TGRA are mainly influenced by one-month 
antecedent rainfall (Du et al., 2013; Cao et al., 2016; Zhou et al., 
2016). We apply 12-day and 24-day antecedent rainfall as inputs to 
represent the role of precipitation. Cyclical oscillation of the RWL is 
another external triggering factor inducing the deformation of reservoir 
landslides. The seepage force and buoyancy force generated by the 
fluctuation of the RWL accelerate the deformation of landslide in the 
TGRA (Tang et al., 2019; Zhou et al., 2022b). With regards to a partic-
ular reservoir landslide, the buoyancy force to landslide motion is 
determined by the RWL elevation, while the seepage force to landslide 
motion is determined by the fluctuation amplitude of the RWL (Zhou 
et al., 2018b). We select the average RWL elevation and fluctuation 
amplitude of every 12-day as model inputs to represent the impact of 
RWL fluctuation. Landslide deformation is also related to its evolution 
state. Landslides in different evolution states may show completely 
different deformation magnitudes even under the same triggering fac-
tors. Here we adopt the displacements over the past 12-day, 24-day, and 
36-day to represent the current evolution state of landslide. 

As stated in Displacement Decomposition (Section 3.3), the trend 
displacement is mainly controlled by internal geological conditions 
while the periodic displacement is controlled by external triggers. 
Hence, three indicators of evolution state are selected as inputs for 
modeling the trend displacement, and seven indicators of evolution 
state, rainfall and RWL fluctuation are selected as inputs for modeling 
the periodic displacement (Table 1). 

3.5. Performance evaluation 

The accuracy assessment of landslide displacement prediction is 
important in prediction model establishment. We utilize four accuracy 
evaluation criteria, namely root mean square error (RMSE), absolute 
percentage error (APE), and mean absolute percentage error (MAPE) 
(Table 2). RMSE, APE and MAPE are used to estimate the deviation 
between the predicted values and the values observed by MT-InSAR. The 
prediction performance is considered better when the smaller value is 
obtained among these metrics. 

4. Results 

We first characterize the spatio-temporal deformation of Shuping 
and Muyubao landslides applying MT-InSAR extracted time series 
displacement, and the relationship between deformation and predis-
posing factors is revealed. Subsequently, we present prediction results 

for both landslides and evaluate the performance of our proposed ML 
based prediction method. 

4.1. Deformation characteristics 

4.1.1. Shuping landslide 
A total of 1018 permanent scattering points were obtained by MT- 

InSAR. The mean annual velocity of these points is aaproximately 
− 100 mm/year, while the maximum value is − 221 mm/year. The 
landslide deformation velocity shows obvious differences in space. The 
main deformation zone occurs in the middle and east part of Shuping 
landslide, while the deformation velocity on the west is not significant 
(> − 80 mm/year) (Fig. 6). 

The displacement-time curve of Shuping landslide presents a notable 
step-like shape (Fig. 6c). In TGRA, the RWL is gradually decreasing from 
175 m in March to 159 m by the end of April (Fig. 6b). During this 
period, the reservoir level declined gradually, while the landslide moved 
continuously at a small velocity of − 7 and − 3 mm/year in 2016 and 
2017, respectively (Fig. 7a and g). From May to June every year, the 
rainy season is coming in TGRA, while the reservoir moves on to the 
rapid decline period. Under the combined effect of rainfall and reservoir 
level decline, the landslide is moving rapidly from April to June during 
the monitoring period, which was shown by the increasing deformation 
velocity of the MT-InSAR point targets in the sliding area (Fig. 7b and h). 
The rainfall in TGRA continues to be heavy during July and August, 
while the reservoir level remains stable at the low level about 145 m. 
Shuping landslide is moving slowly in this period (Fig. 7c and i), because 
the stable water level reduces the seepage force on its movement, which 
is also the major driving factor (Song et al., 2018; Zhou et al., 2022b). 
The TGRA starts to store water in October, which reaches the storage 
level of 175 m at the end of October. At the same time, the rainfall de-
creases gradually. The velocity of the Shuping landslide was relatively 
small in October compared with the earlier periods (Fig. 7d). Dry season 
arrives in TGRA from November and lasts until February in the following 
year when the reservoir level is at the level of 175 m. Under the con-
dition of stable reservoir level and small rainfall from November to 
February, the landslide moved subtly, which is the most stable period of 
within the annual monitoring time (Fig. 7e and f). 

4.1.2. Muyubao landslide 
A total of 1523 points are obtained in Muyubao landslide. The mean 

velocity of these points is − 69 mm/year, and the max velocity is − 208 
mm/year. Due to the developed cracks in the upper and eastern parts of 
the landslide, they provide a favorable channel for rainfall infiltration 
(Zhou et al., 2020). The deformation rate of the landslide decreases 
gradually from eastern upper portion to the front western portion 
(Fig. 8). The eastern upper part of the landslide is experiencing signifi-
cant deformation, with a deformation rate of approximately − 100 mm/ 
year. Unlike Shuping landslide, Muyubao landslide keeps moving in the 
high reservoir level periods (>170 m), such as the 25 mm deformation 

Table 1 
Inputs of trend and periodic displacement modeling.  

Prediction items Influencing 
factors 

Inputs 

Trend displacement Evolution state 
a. the deformation over the past 12 days; 
b. the deformation over the past 24 days; 
c. the deformation over the past 36 days. 

Periodic 
displacement 

Rainfall a. the rainfall over the past 12 days; 
b. the rainfall over the past 24 days. 

RWL fluctuation 

c. the variation reservoir level of the past 
12 days; 
d. the average reservoir level of the past 
12 days. 

Evolution state 
e. the deformation over the past 12 days; 
f. the deformation over the past 24 days; 
g. the deformation over the past 36 days.  

Table 2 
Evaluation criteria for model performance.  

Item Formula Notes 

RMSE 
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
i=1

(d̂i − di)
2

√

RMSE measures the deviation between the 
observed and the predicted displacement 
values, where di is the observed values, d̂i is the 
predicted values, and N refers to the number of 
displacement values. 

APE APE =

⃒
⃒
⃒
d̂i-di

di

⃒
⃒
⃒
⃒

Absolute percentage error (APE) is the absolute 
percentage of the deviation between the 
observed and the predicted values. 

MAPE 
MAPE =

1
N

∑N
i=1

⃒
⃒
⃒
⃒
di − d̂i

di

⃒
⃒
⃒
⃒

MAPE is the mean of APE. Since the dispersion 
is absolute value, there will be no cancellation 
of positive and negative values, MAPE can 
reflect the error accurately. The smaller value 
reflected the higher prediction accuracy.  
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from November 2016 and February 2017. The moving speed was 
slowing down during the slow-decline period (March ~ April 2017), the 
top monthly speed of which is 10 mm. All the monitoring points on the 
Muyubao landslide began to accelerate their deformation from May to 
June 2017. The simultaneously occurred rainy season and rapid draw-
down water level of the TGRA triggered a maximum 30 mm/month 
displacement of the sliding body (Fig. 9). The detailed deformation 
characteristic description of Muyubao landslide can be found in Zhou 
et al. (2020). 

4.2. Displacement prediction 

Here, we select two target points named as SP-1 in Shuping landslide 
and MYB-1 in Muyubao for displacement prediction, taking into account 
the high coherence of these points in the SAR images and their strong 
deformation (Fig. 6 and Fig. 8). The total displacements of both the 
points are decomposed into trend and period terms by discrete WD al-
gorithm (Fig. 10). In this study, 35 displacement values from March 10, 
2016 to April 22, 2017 are used as training samples, while a total of 12 
values from May 4, 2017 to September 13, 2017 are used for 
verification. 

4.2.1. Trend displacement 
The trend displacements of Shuping and Muyubao landslides are in 

the pattern of continuous growth. This pattern matches the standard 
landslide creep curve (Saito, 1965), which indicates that both landslides 
are in the steady-state creep stage during this monitoring period. Three 
machine learning methods are used for modeling; the hyperparameters 
for both landslides are shown in Table 3. The GRU performs well in the 
prediction of trend displacement (Fig. 11). The RMSE and MAPE of 
Shuping landslide are 1.332 and 0.007, while they are respectively 
2.294, and 0.008 of Muyubao landslide (Table 4). 

4.2.2. Periodic displacement 
In the periodic displacement modeling, the GRU, LSTM and Kernel- 

based Extreme Learning Machine (KELM) are selected for modeling. 
Their hyperparameters are shown in Table 3. The periodic displacement 
prediction results of the three models for both landslides are shown in 
Fig. 12, which all have achieved expected results. The RMSE and MAPE 
of Shuping landslide achieved by GRU are the lowest of 3.716 and 0.321 
(Table 4). It suggests GRU achieved the best prediction performance of 
all the used models. Similarly, GRU also performed best for Muyubao 
landslide among all considered models. The RMSE and MAPE are 5.414 

and 0.354, respectively. 

4.2.3. Total displacement 
The total displacement is the sum of the predicted trend and periodic 

values. Accurate prediction of the periodic displacement is the key to the 
total displacement prediction. In order to compare the model perfor-
mance in the prediction of the periodic displacement, the trend 
displacement used to add up to the total displacement is predicted by the 
same model of GRU. The final prediction results of both landslides are 
shown in Fig. 13. As shown in Table 4, the total displacement of GRU has 
the highest accuracy for both landslides, the RMSEs are 3.817 (Shuping 
landslide) and 5.145 (Muyubao landslide), respectively. 

5. Discussion 

In this study, we introduced a novel framework for physically-based 
landslide displacement prediction using MT-InSAR and machine 
learning techniques. This sectionexamins the physical principles of the 
movement of Shuping and Muyubao landslides through MT-InSAR 
analysis. We also analyze the prediction performance of machine 
learning algorithms and evaluate the monitoring accuracy of MT-InSAR 
technique quantitatively. Finally, we will discuss the application sce-
narios of our proposed displacement prediction framework. 

5.1. The importance of underlying physical principles behind 
displacement prediction 

Shuping landslide and Muyubao landslide show different deforma-
tion modes revealed by using MT-InSAR. As we can see in Fig. 6 and 
Fig. 8, when the RWL is rapidly declining, the Shuping landslide is 
experiencing an accelerated motion, which is shown in the rapid rise of 
displacement monitoring curve. The alternations of accelerated de-
formations and stabilization phases make the curves a step-like shape. 
While for Muyubao landslide, in each cycle of reservoir operation, the 
deformation velocity does not fluctuate much, causing its monitoring 
curves to follow an approximate linear trend. 

According to the shape of the monitoring curves and the reservoir 
landslide classification criteria proposed by Zhou et al. (2022b), we 
characterize Shuping landslide and Muyubao landslide as seepage- 
driven and buoyancy-driven, respectively. The driving mechanisms of 
RWL fluctuation on the deformation of these two landslides are different 
due to the variable geological conditions. During the decline period of 
RWL, as the poor permeability of seepage-driven landslide, the pore- 

Fig. 6. (a) The deformation velocity of Shuping landslide, (b) Reservoir water level and daily rainfall in TGRA, and (c) The displacement-time curve of SP-1.  
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water pressure dissipates greatly behind the reservoir drawdown speed. 
The resulting seepage force thus enhances the hydrodynamic pressure 
within the sliding mass, which makes the strong deformation of the 
Shuping landslide. The driving force of RWL fluctuation on the Muyubao 
landslide occurrs during the high RWL period. The buoyancy force re-
duces the sliding resistance force, thereby triggering the strong defor-
mation of the landslide (Tang et al., 2019). Moreover, rainfall and 
seepage force act simultaneously on the movement of the Shuping 
landslide, but they are staggered on the Muyubao landslide. Displace-
ments of both landslides show that their deformations are jointly 
controlled by rainfall and RWL, which corresponds to the foundations of 
factors input selection for machine learning modeling. Considering that 
the effects of external inducing factors on landslide movement are 
similar on all bank landslides, such as seepage-driven and buoyancy- 
driven, the inputs used in this study can be generalized to other reser-
voir landslides in the TGRA and other reservoir regions. But the model 
needs be retrained based on the specific response mechanisms between 
factors and deformations. 

5.2. Quality of the input displacement 

Accurate ground displacement measurement is the precondition for 

landslide displacement prediction. We verify the accuracy of the 
displacement data retrieved by MT-InSAR by two methods. In Shuping 
landslide, two PS points (SP-2 and SP-3, the locations are in Fig. 6a) 
outside the sliding body are selected for the velocity analysis. According 
to the displacement time series (Fig. 14a and b), no deformation occurs 
at either point, the results match the field investigation very well. 
Moreover, we collect the displacement time series of two GNSS obser-
vation points of Shuping landslide in 2017 (the locations are in Fig. 6a), 
and compare the data obtained by GNSS and MT-InSAR technology. As 
shown in Fig. 14c and d, the monitored displacements of both tech-
niques are on the same order of magnitude including the sharply 
changing deformation periods. In Muyubao landslide, the displacement 
obtained by MT-InSAR is accurate as well (Zhou et al., 2020). The ac-
curacy validation demonstrates that the long-term series of displace-
ment data obtained by open-source radar images and MT-InSAR 
technology is reliable for landslide prediction. 

5.3. Displacement prediction performance using machine learning 

The trend terms are relatively easy to predict exactly in both land-
slides investigated, so the accuracy of the periodic deformation predic-
tion is crucial for their final total displacement prediction. The GRU 

Fig. 7. MT-InSAR-derived monthly deformation velocity map of Shuping landslide.  
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method achieves excellent prediction in this study, and outperforms 
commonly used LSTM and KELM (Table 4 and Fig. 13). The Adam 
optimization algorithm can improve the prediction accuracy and speed 
up the convergence speed in the early stage of the model, while GRU can 

accurately establish the relationship between the periodic item and their 
triggers. Due to consideration of physical principles behind landslide 
deformation, the physically-based method can predict displacement 
more accurately than pure data-driven methods, especially at the stage 

Fig. 8. (a) The deformation velocity of Muyubao landslide, (b) Statistics of deformation velocity, and (c) The displacement-time curve of MYB-1.  

Fig. 9. Monthly deformation velocity of Muyubao landslide from MT-InSAR (After Zhou et al., 2020).  
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of sudden increase in landslide deformation (Zhou et al., 2018b). For 
practical applications, the timeliness of the data is also significant for 
landslide prediction. Due to the hysteresis effect of the displacement 
influencing factors, the prediction accuracy will be disturbed by long- 
term historical information over time (that is, the timeliness of the 

data), which will inevitably lead to the reduction of prediction accuracy. 
The GRU model proposed in this paper gives full play to the ability of the 
dynamic model to process relevant information before and after time 
series mining, which can express the long-term effects of influencing 
factors. It also performs well in terms of prediction accuracy for cases 
with limited training samples. ML algorithms obtain knowledge from 
historical data and construct functions to make forecasts. It assumes that 
the relationship between the deformation and the triggers does not 
change. We can achieve an accurate and reliable prediction with ML 
method only when the future deformation and the historical deforma-
tion of a landslide are in the same evolution state. In addition, triggering 
factors of each landslide and their response relationships to deformation 
usually change. The inputs and hyperparameters of each landslide pre-
diction model may be different due to the various driving mechanisms. 
Therefore, we cannot directly apply the prediction model trained in this 
study to other landslides. It is better to train the model for each target 
landslide in practice. 

5.4. Training strategy and data length in implementation 

Applying more data to train machine learning models usually results 
in a better prediction accuracy. However, for MT-InSAR-driven landslide 
displacement prediction, we need to balance the effects of MT-InSAR 
monitoring quality and training data length on prediction accuracy. In 
previous studies (Du et al., 2013; Xu and Niu, 2018; Ju et al., 2020), the 
input displacement data were mainly obtained through GNSS, whose 
performance is almost unaffected by the length of observation period. 
Since the observation of MT-InSAR is influenced by land-cover type, its 
observation performance will be affected by the length of observation 
time to a certain extent. Stable strong scatterers, such as infrastructure, 
are ideal targets for MT-InSAR observations (Even and Schulz, 2018). In 
these areas, MT-InSAR can not only extract more monitoring targets, but 
also make the displacement time series more accurate. Usually, the 
variation intensity of the land-cover type may be more dramatic over a 
longer period. Changes in land-cover types result in alterations to the 
radar echo phase, thereby increasing the likelihood of temporal decor-
relation in radar images (Jiang et al., 2014). Additionally, atmospheric 
effects pose another challenge to retrive reliable measurement points for 
slow-moving landslides over longer observation periods. Generally, 
longer observation period would be beneficial for model training, but 
may result also in more challenges to the monitoring performance of 
MT-InSAR. The input displacement with high-quality is the prerequisite 
for an accurate prediction. 

To address the influence of training data length on model perfor-
mance, the displacement from 2017 to 2021 are obtained and applied 

Fig. 10. Displacement decomposition results of (a) Shuping landslide (SP-1), and (b) Muyubao landslide (MYB-1).  

Table 3 
The main hyperparameters of displacement prediction models.  

Modeling Shuping 
landslide 

Muyubao 
landslide 

Notes 

Trend 
items   

Adam is applied as optimizer 
for GRU and LSTM. 
c is the penalty coefficient; 
γ is the parameter of kernel 
function; 
n is the number of neurons in 
hidden layer. 

GRU n = 4 n = 24 
Periodic 

items   
GRU n = 750 n = 520 
LSTM n = 750 n = 640 
KELM c = 1010, γ =

3.65*105 
c = 1010, γ =
1.38*105  

Fig. 11. Prediction results of trend displacement by GRU: (a)Shuping landslide, 
and (b)Muyubao landslide. 
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for modeling comparison. Here, a neighboring point of MYB-1 is selected 
for the displacement prediction modeling. A total of 109 displacement 
data from March 12th, 2017 to October 10th, 2020 are selected for 
training, while the remaining 31 displacement data from October 22th, 
2020 to October 17th, 2021 are used to validation. The RMSE and MAPE 
of the total displacement prediction are 2.687and 0.853, respectively. 

Compared with the accuracy results in Table 4, we find that involving 
more training data does not change the performance much and the 
improvement in predicton accuracy is not signifcant. Hence, considering 
the monitoring frequency of Sentinel-1A satellite, the characteristics of 
MT-InSAR and ML methods, and other related reports (Miao et al., 2018; 
Zhou et al., 2018b), we suggest that the past data for model training 

Table 4 
The statistics of the prediction accuracy.  

Model Index Shuping landslide Muyubao landslide 

Trend displacement Periodic displacement Total displacement Trend displacement Periodic displacement Total displacement 

GRU RMSE 1.332 3.716 3.817 2.293 5.414 5.145 
MAPE 0.007 0.321 0.022 0.008 0.354 0.020 

LSTM RMSE / 4.278 4.423 / 6.023 5.701 
MAPE / 0.366 0.025 / 0.378 0.023 

KELM RMSE / 4.101 3.928 / 5.460 5.772 
MAPE / 0.314 0.026 / 0.374 0.022  

Fig. 12. The periodic displacement prediction: (a) Shuping landslide, and (b) Muyubao landslide.  

Fig. 13. The total displacement prediction: (a) Shuping landslide, and (b) Muyubao landslide.  
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should be more than one year, where 2–5 years is more appropriate. 
The performance of a prediction model is time-dependent. A trained 

model typically exhibits excellent performance on data similarly to what 
it was trained on. However, the response pattern between deformation 
and triggering factors changes with the landslide evolution process. The 
model performance may decrease or even fail when the new response 
patterns which are not present in its training data occur. In practice, it is 
necessary to regularly conduct retraining with updated data to ensure 
the ongoing adaptability to new patterns, thereby maintaining accurate 
performance of landslide displacement prediction. 

5.5. Application of the MT-InSAR-driven framework 

Since MT-InSAR is effective in monitoring slow deformation, the 
proposed MT-InSAR-driven approach is more appropriate for the slow- 
moving progressive landslide prediction. The lifespan of a standard 
progressive landslide will go through three successive phases: initial 
deceleration, constant deformation, and accelerate deformation to fail-
ure. Secondary creep manifests as slow motion at an almost constant 
speed over a long period of time, but with fluctuations caused by the 
inducing factors (rainfall and RWL, et al.). The secondary creep may last 
for variable duration, which could be months, years, or even decades. 
The premise to predict the final landslide failure time is to accurately 
diagnose whether the landslide has moved on to the hyperbolic accel-
eration state. The ML-based landslide displacement prediction method 
can be used to identify changes in the deformation state of landslides. 
The premise to predict the final landslide failure time is to accurately 
diagnose whether the landslide has moved on to the hyperbolic accel-
eration state (Intrieri et al., 2019). When a landslide has entered an 
acceleration state that the ML method cannot predict, it indicates that 
the landslide enters a next state that is closer to failure. The early 
warning procedure can be initiated at this time (Zhou et al., 2018b). 

SAR satellites’ footprints cover most of the globe. Using the open- 
source Sentinel-1A imagery and the displacement prediction frame-
work developed in this study, we can establish a MT-InSAR-driven 
regionally oriented monitoring and early warning system for slow- 
moving landslides. It can provide economic and effective support for 
global disaster prevention and mitigation, especially for developing 
countries. 

6. Conclusions 

In this study, we have developed a robust physically-based 

framework for predicting landslide displacement prediction by 
combining MT-InSAR and ML techniques. Our objective is to explore the 
intricate non-linear relationship between landslide displacement and its 
trigerring factors. The MT-InSAR method precisely captures the spatio- 
temporal patterns of displacement fields in both Shuping and Muyu-
bao landslides. Our findings reveal that both landslides are currently in 
the steady-state creep stage, undergoing deformations characterized by 
notable spatial variations. Shuping landslide exhibits seepage-driven 
deformation, primarily triggered by the decline of RWL and short-term 
concentrated rainfall. On the other hand, Muyubao landslide is 
buoyancy-driven, with deformation primarily induced by strong rainfall 
and high water levels. The application of our proposed methodology 
demonstrates the capability to accurately construct dynamic response 
patterns between landslide deformation and its triggers. Leveraging 
three machine learning (ML) models—namely, GRU, LSTM, and 
KELM—yielded outstanding prediction accuracy. Notably, the Adam 
algorithm played a pivotal role in optimizing and enhancing the pre-
dictive efficiency of the GRU model. Among the models, the GRU model, 
incorporating influential factors, exhibited the most superior perfor-
mance. The calculated RMSE and MAPE for the GRU model were 3.817 
and 0.022 in Shuping landslide, and 5.145 and 0.020 for the Muyubao 
landslide, respectively. It is noteworthy that these results were obtained 
with past data used for model training spanning more than one year, 
although a training duration of 2–5 years is deemed more appropriate. 
Furthermore, regularly training with updated data is necessary to 
maintain accurate performance of prediction model. Overall, our pro-
posed framework for landslide displacement prediction, leveraging 
freely available Sentinel-1 SAR data, proves to be cost-effective. This 
approach is particularly recommended for regions susceptible to slow- 
moving landslides that can be effectively monitored through the MT- 
InSAR technique. 

CRediT authorship contribution statement 

Chao Zhou: Writing – original draft, Methodology, Investigation, 
Funding acquisition, Formal analysis, Data curation, Conceptualization. 
Ying Cao: Writing – original draft, Supervision, Investigation, Funding 
acquisition, Formal analysis, Conceptualization. Lulu Gan: Visualiza-
tion, Investigation. Yue Wang: Visualization. Mahdi Motagh: Writing – 
review & editing, Investigation, Supervision. Sigrid Roessner: Writing – 
review & editing. Xie Hu: Writing – review & editing. Kunlong Yin: 
Supervision. 

Fig. 14. (a) Displacement time series of SP-2, (b) Displacement time series of SP-3, (c) The comparison of MT-InSAR and GNSS-1, and (d) The comparison of MT- 
InSAR and GNSS-2. Please see the locations in Fig. 6. 

C. Zhou et al.                                                                                                                                                                                                                                    



Engineering Geology 334 (2024) 107497

13

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This research is funded by the National Natural Science Foundation 
of China (No. 42371094 No. 41907253, No. 41702330, and No. 
42371078) and Key Research and Development Program of Hubei 
Province (No. 2021BCA219). This work is also partially supported by 
Helmholtz in Germany within the framework of the HIP project Multi-
SaT4SLOWS. We would like to appreciate the editor and two referees for 
their comments which significantly improves this paper. The first author 
would like to thank the China Scholarship Council for funding his 
research at the German Research Centre for Geosciences. 

References 

Bekaert, D.P.S., Handwerger, A.L., Agram, P., et al., 2020. InSAR-based detection method 
for mapping and monitoring slow-moving landslides in remote regions with steep 
and mountainous terrain: an application to Nepal[J]. Remote Sens. Environ. 249, 
111983. 

Berardino, P., Fornaro, G., Lanari, R., et al., 2002. A new algorithm for surface 
deformation monitoring based on small baseline differential SAR interferograms[J]. 
IEEE Trans. Geosci. Remote Sens. 40 (11), 2375–2383. 

Cao, Y., Yin, K., Alexander, D.E., et al., 2016. Using an extreme learning machine to 
predict the displacement of step-like landslides in relation to controlling factors[J]. 
Landslides 13 (4), 725–736. 

Cao, Y., Yin, K., Zhou, C., et al., 2020. Establishment of landslide groundwater level 
prediction model based on GA-SVM and influencing factor analysis[J]. Sensors 20 
(3), 845. 

Carla, T., Raspini, F., Intrieri, E., et al., 2016. A simple method to help determine 
landslide susceptibility from spaceborne InSAR data: the Montescaglioso case study 
[J]. Environ. Earth Sci. 75 (24), 1–12. 

Casagli, N., Intrieri, E., Tofani, V., et al., 2023. Landslide detection, monitoring and 
prediction with remote-sensing techniques. Nat. Rev. Earth Environ. 4 (1), 51–64. 

Chae, B.G., Park, H.J., Catani, F., Simoni, A., Berti, M., 2017 Dec 1. Landslide prediction, 
monitoring and early warning: a concise review of state-of-the-art[J]. Geosci. J. 21 
(6), 1033–1070. 

Cheng, W.M., 2014. Research on the Mechanism and Warning Criteria of Landslides 
Based on Monitoring System after Water Storage in the Three Gorges Reservoir[D]. 
China University of Geosciences, Wuhan.  

Ciampalini, A., Raspini, F., Lagomarsino, D., et al., 2016. Landslide susceptibility map 
refinement using PSInSAR data[J]. Remote Sens. Environ. 184, 302–315. 

Deng, L., Smith, A., Dixon, N., et al., 2021. Machine learning prediction of landslide 
deformation behaviour using acoustic emission and rainfall measurements[J]. Eng. 
Geol. 293, 106315. 

Devara, M., Tiwari, A., Dwivedi, R., 2021. Landslide susceptibility mapping using MT- 
InSAR and AHP enabled GIS-based multi-criteria decision analysis[J]. Geomat. Nat. 
Haz. Risk 12 (1), 675–693. 

Du, J., Yin, K., Lacasse, S., 2013. Displacement prediction in colluvial landslides, three 
Gorges reservoir, China[J]. Landslides 10 (2), 203–218. 

Even, M., Schulz, K., 2018. InSAR deformation analysis with distributed scatterers: a 
review complemented by new advances. Remote Sens. 10 (5), 744. 

Fan, X., Yang, F., Siva Subramanian, S., et al., 2020. Prediction of a multi-hazard chain 
by an integrated numerical simulation approach: the Baige landslide, Jinsha River, 
China[J]. Landslides 17 (1), 147–164. 

Ferretti, A., Prati, C., Rocca, F., 2001. Permanent scatterers in SAR interferometry[J]. 
IEEE Trans. Geosci. Remote Sens. 39 (1), 8–20. 

Ferretti, A., Fumagalli, A., Novali, F., et al., 2011. A new algorithm for processing 
interferometric data-stacks: SqueeSAR[J]. IEEE Trans. Geosci. Remote Sens. 49 (9), 
3460–3470. 

Froude, M.J., Petley, D.N., 2018 Aug 23. Global fatal landslide occurrence from 2004 to 
2016. Nat. Hazards Earth Syst. Sci. [J]. 18 (8), 2161–2181. 

Guo, Z., Chen, L., Gui, L., et al., 2020. Landslide displacement prediction based on 
variational mode decomposition and WA-GWO-BP model[J]. Landslides 17 (3), 
567–583. 

Haghshenas Haghighi, M., Motagh, M., 2016. Assessment of ground surface displacement 
in Taihape landslide, New Zealand, with C-and X-band SAR interferometry[J]. N. Z. 
J. Geol. Geophys. 59 (1), 136–146. 

Han, H., Shi, B., Zhang, L., 2021. Prediction of landslide sharp increase displacement by 
SVM with considering hysteresis of groundwater change[J]. Eng. Geol. 280, 105876. 

Haque, U., Blum, P., Da Silva, P.F., et al., 2016. Fatal landslides in Europe[J]. Landslides 
13 (6), 1545–1554. 

Helmstetter, A., Sornette, D., Grasso, J.R., et al., 2004. Slider block friction model for 
landslides: Application to Vaiont and La Clapiere landslides[J]. J. Geophys. Res. 
Solid Earth 109 (B2). 

Hilley, G.E., Burgmann, R., Ferretti, A., et al., 2004. Dynamics of slow-moving landslides 
from permanent scatterer analysis. Science 304 (5679), 1952–1955. 

Hooper, A., 2008. A multi-temporal InSAR method incorporating both persistent 
scatterer and small baseline approaches[J]. Geophys. Res. Lett. 35 (16). 

Hooper, A., Zebker, H.A., 2007. Phase unwrapping in three dimensions with application 
to InSAR time series[J]. JOSA A 24 (9), 2737–2747. 

Hooper, A., Zebker, H., Segall, P., et al., 2004. A new method for measuring deformation 
on volcanoes and other natural terrains using InSAR persistent scatterers[J]. 
Geophys. Res. Lett. 31 (23). 

Hooper, A., Segall, P., Zebker, H., 2007. Persistent scatterer interferometric synthetic 
aperture radar for crustal deformation analysis, with application to Volcán Alcedo, 
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