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Abstract Landslide hazard mapping is essential for disaster reduc-
tion and mitigation. The hazard map produced by the spatiotem-
poral probability analysis is usually static with false-negative and 
false-positive errors due to limited data resolution. Here we propose 
a new method to obtain dynamic landslide hazard maps over the 
Wushan section of the Three Gorges Reservoir Area by introducing 
the ground deformation measured by the spaceborne Copernicus 
Sentinel-1 synthetic aperture radar (SAR) imagery collected from 
9/30/2016 to 9/13/2017. We first determine the spatial probability 
of landslide occurrence predicted by the support vector machine 
algorithm. We also conducted the statistical analysis on the tem-
poral probability of landslide occurrence under various rainfall 
conditions (0, 0–50, 50–100, and > 100 mm for the antecedent 5-day 
total). We initialize a preliminary landslide hazard map by combin-
ing the spatial and temporal landslide probabilities. Meanwhile, the 
ground deformation velocities during the representative dry and 
wet seasons can be extracted from multi-temporal interferomet-
ric SAR (MT-InSAR). Thereafter, the landslide hazard map can be 
finalized by an empirical assessment matrix considering both the 
preliminary landslide hazard map and deformation velocities. Our 
results demonstrate that false-negative and false-positive errors in 
the landslide hazard map can be effectively reduced with the assis-
tance of the deformation information. Our proposed method can 
be used to assess the dynamic landslide hazard at higher accuracy.

Keywords Landslide · MT-InSAR · Dynamic hazard mapping · 
Three Gorges Reservoir Area

Introduction

Landslides are common natural hazards that pose threats to the life 
and property worldwide (Froude and Petley 2018). In particular, 
the Three Gorges Reservoir Area (TGRA) in China is vulnerable to 
mass wasting due to fragile geological conditions, seasonal rain-
fall, and drastic reservoir filling (Tang et al. 2019; Cao et al. 2020). 
More than 5000 landslides over TGRA directly put critical lifelines 
and transportation corridors at risks. Landslide hazard mapping 
aims to quantify the spatial and temporal probabilities of landslides 
(Segoni et al. 2018). Knowledge on the geographic locations and 
timing of landslides is essential to natural hazard reduction and 
mitigation.

Landslide susceptibility is the spatial probability of landslide 
occurrence based on a group of predisposing factors (such as slope, 
lithology) (Van Westen et al. 2003; Guzzetti et al. 2006; Chen et al. 
2020, 2021; Hong et al. 2020; Pham et al. 2020). The engineering 
geological analogy is the theoretical basis of landslide susceptibility 

modeling (LSM). It assumes that future landslides are more likely 
to occur under similar conditions as pervious events (Neuhäuser 
and Terhorst 2007; Zhou et al. 2020a). The data-driven algorithms 
of LSM such as support vector machine (SVM) (Bui et al. 2012; 
Pourghasemi et al. 2013; Zhou et al. 2018a), random forest (Catani 
et al. 2013; Hong et al. 2019; Wang et al. 2020a, b), logistic regres-
sion (Lee and Sambath 2006; Bai et al. 2010), and artificial neural 
networks (Pradhan and Lee 2010; Gomez and Kavzoglu 2005) have 
been widely used. The temporal probability of landslide occurrence 
defines the time and frequency of the slope failures in response 
to the specific triggering factor, including rainfall and earthquake.

Slow-moving landslides spread over the TGRA. The lifetime 
of slow-moving landslides transitioning from slow movement to 
dynamic failures can last for hundreds of years (Lacroix et al. 2020). 
The slope deformation responds to environmental forces differ-
ently during the landslide evolution (Cao et al. 2016; Bontemps 
et al. 2020). The cumulative displacements in the TGRA present a 
step-like variation in a single water year (Zhou et al. 2018b). The 
landslide motions accelerate from April to September due to the 
rapid decline of reservoir water level and intense rainfall. On the 
other hand, no apparent motion has been observed from October 
to March in the following year due to the high stand while stable 
reservoir water level in dry season. We consider two time spans 
for landslide hazard mapping in TGRA referring to their distinct 
hydrological conditions and deformation.

The spatial and temporal probabilities of landslide occurrences  
have been used to produce hazard maps in landslide-prone 
areas (e.g., Guzzetti et al. 2005; Kawagoe et al. 2010; Segoni et al. 
2014; Fu et al. 2020). However, a lack of knowledge on land- 
slide deformation may lead to misinterpretation. Two types of 
errors are considered, namely, false-positive and false-negative 
errors. The false-positive error means that the off-slide terrains 
are misclassified as unstable slopes. Therefore, the land use of 
these terrains may be restricted. The false-negative error means 
that the on-slide terrains are misclassified as stable areas. The 
consequence of false-negative error can be fatal. When these 
landslide-affected terrains are developed without caution,  
Catastrophic consequences may be triggered by persistent creep 
or dynamic failures (Corominas et al. 2014; Ciampalini et al. 2016).

Elimination of both types of errors is a priority in landslide 
hazard reduction. Multi-temporal (MT) Interferometric Synthetic 
Aperture Radar (InSAR) methods, such as Permanent Scatterer 
InSAR (PS-InSAR) (Ferretti et al. 2001), Small Baseline Subset  
(SBAS) (Berardino et al. 2002), and SqueeSAR (Ferretti et al. 2011), 
have been used to measure spatiotemporal deformation in land- 
slide identification and monitoring (e.g., Lu et al. 2014; Dong et al. 
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2018; Intrieri et al. 2019; Dai et al. 2020; Hu et al. 2020; Xie et al. 2020; 
Zhang et al. 2020; Zhou et al. 2020a,  b; Bekaert et al. 2020; Wasowski 
and Pisano 2020; Liu et al. 2021; Handwerger et al. 2021). The con-
temporary Copernicus Sentinel-1 satellite constellation launched 
by the European Space Agency (ESA) provides a considerable free 
collection of SAR imagery for performing MT-InSAR.

The Wushan section of TGRA is subjected to landslides and 
no hazard map is available. The current application of InSAR in 
TGRA is focused on the identification of landslide location and 
triggering factors. In this study, we produce preliminary landslide 
hazard maps in different rainfall scenarios considering the spatial 
and temporal probabilities of landslide occurrence. We divide 1 
water year into two periods based on the hydrological conditions 
and the landslide deformation response. The ground deformation 
velocities are extracted using MT-InSAR, and incorporated to pro-
duce landslide hazard maps using an empirical assessment matrix. 
With this procedure, we attempt to obtain a dynamic and accurate 
hazard map by integrating information on ground deformation.

Study area

Our study area is featured with mountains in the Wushan section 
of TGRA along the Yangtze River (Fig. 1). It is located at the junc-
tion of the Daba Mountain, Wushan Mountain, and Qiyaoshan 
Mountain with a complex geologic structure. The secondary fold 
and fault structures are well developed. The exposed stratum in 
this area is mainly carbonate rocks with clastic rocks of the Lower 
Triassic Jialingjiang Formation and the Quaternary deposits.

The study area has a humid subtropical climate with abundant  
rainfall. The average annual rainfall is 1049 mm. The maximum 
annual rainfall is 1356 mm and the maximum monthly rainfall  
is 446 mm in September 1979. The maximum daily rainfall of  
385 mm occurred on August 31, 2014. The seasonal rainfall mainly  
occurs from May to September, accounting for ~ 69% of the 
annual total (Yu et al. 2019). The reservoir water level of TGRA 
was initially impounded from 69 to 135 m a.s.l. in 2003. It has 
been in cyclic hydraulic operation since 2009 with a fluctua- 
tion between 145 and 175 m a.s.l. The rapid water level rise and 
drawdown in the TGRA keep modifying the hydrogeological 
environment of the reservoir banks and promoting the bank 
instability.

The gully and hill-cutting landscapes are exposed to frequent 
landslide disasters (Zhou et al. 2013; Huang et al. 2019; Ahmed 
2021). For example, the global dataset of landslide occurrence 
recorded by Froude and Petley (2018) shows that 11.3% of fatal 
landslides are caused by illegal hill-cutting between 2004 and 
2016. The hydrodynamic pressures and lateral erosions caused 
by water-level fluctuation mobilize the bank slopes. Based 
on high-resolution remote sensing imagery, field investiga-
tions, and landslide reports, a total of 165 landslides have been 
included in the landslide inventory (Fig. 1). Most of them are col- 
luvial landslides. They cover an area of 12.65  km2, and individual 
landslides range between 1.7 ×  10−3 and 1.06  km2. Rainfall, water 
level fluctuations of TGRA, and anthropogenic activities are 
the main triggering factors of the initiation and deformation 
of landslides. Among all landslide terrains, fifteen of them are 
currently unstable.

Fig. 1   a Geographic location of our study area. b Three Gorges Reservoir Area. c Landslides in the Wushan segment marked with the cross-
hatched red areas superimposed on the surface elevation
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Methodology

The principle of landslide hazard mapping

Landslide susceptibility modeling

Landslide hazard mapping is the quantification of spatial and tem-
poral probabilities of landslide occurrence. The spatial probability 
can be obtained using LSM. In the data-driven methods of LSM, 
landslide predisposing factors are evaluated simultaneously, which 
can be further applied to unaffected areas in similar conditions. The 
data-driven methods are mainly statistical and machine learning 
algorithms. Support vector machine (SVM) is based on the prin-
ciple of the Vapnik–Chervonenkis dimension and structural risk 
minimization. The input variables are mapped to a high-dimension 
linear space by nonlinear transformation to construct the optimal 
decision function. The SVM model searches for an optimal sur-
face in the feature space to separate positive (landslide) from the 
negative (non-landslide) types (Peng et al. 2014). SVM has been 
successfully used in landslide detection (e.g., Marjanović et al. 2011; 
Zhou et al. 2018a; Huang and Zhao 2018; Dou et al. 2020).

The landslide susceptibility map has been produced through an  
integrated algorithm of Information Gain and SVM (Yu et al. 2019).  
The variables considered for the LSM are extracted from the fol-
lowing available maps and data layers: the existing landslide inven-
tory map (Fig. 1(c)), surface elevation, the geological maps, and the  
topographical map. According to the field survey and preliminary  
results in TGRA (Bai et al. 2010; Wu et al. 2013; Peng et al.  
2014), fourteen predisposing factors are initially considered and 
prepared, namely altitude, slope, aspect, curvature, plan curvature, 
profile curvature, stream power index (SPI), topographic wetness 
index (TWI), terrain roughness index (TRI), lithology, bedding 
structure, distance to faults, distance to rivers, and distance to gul-
lies. After multicollinearity analysis and importance calculation, 
the altitude, curvature, plan curvature, profile curvature, and TWI 
are removed (Yu et al. 2019). Finally, nine predisposing factors are 
selected as inputs for LSM (see Table 1 for details). In our study, the 

variables have been resampled to the same 20-by-20-m pixels. We 
use 70% of the known landslides for training, and the remaining 
30% are for validation. Radial basis function (RBF)-based SVM is 
used to construct the relationship between the spatial probability 
of landslide occurrence and its predisposing factors. Through the 
trial and error method, the parameters of penalty function and RBF 
are set as 20 and 1.3, respectively. The detailed information of LSM 
can be found in Yu et al. (2019).

Statistics of rainfall and landslides

In this study, the rainfall datasets are collected from a rain gauge 
which is about 2 km from the urban area of Wushan (109°52′05″E, 
31°05′55″N). The rain gauge has been collecting data once a day 
since 1960. A total of 158 landslides that occurred between 1995 and 
2015 are selected as samples. July 1998 witnessed unprecedented 
rainfall with 5-day rainfall total exceeding 300 mm (Fig. 2). The 
severe rainfall induced the failure of 25 landslides, accounting for 
15.8% of the landslide inventory. Thereafter, a total of 38 landslides 
failed in 2003 due to a combined effect of wet season and the first 
impoundment of the TGRA (Fig. 2). Liu (2014) has demonstrated 
that the antecedent 5-day rainfall total is mostly correlated with 
landslide events in TGRA. Therefore, we use it to represent rainfall 
when comparing with the landslide occurrence probability.

Landslide hazard mapping using probability analysis

The temporal probability of landslide occurrence is generally 
expressed in terms of frequency/return period of recurring land-
slide events (Corominas et al. 2014). The frequency represents the 
number of events in a certain time interval or for a type of spe-
cific triggering event (e.g., earth shaking or rainfall) (Bordoni et al. 
2020). Here, we consider the rainfall. The landslide hazard index 
H is given by

(1)H = P(s) × P(t) × P(l)

Table 1   Predisposing factors. Original data were collected by the Chongqing Bureau of Planning and Natural Resources

Predisposing factors Notes

Slope angle The steepness or the degree of incline of a surface.

Aspect The orientation of the largest topographic gradient with respect to the north

SPI A measure of the erosive power of flowing water given by SPI = As × tan(β), where As is the specific  
contributing area and β is the slope angle

TRI The degree of surface erosion and the complexity of topographic relief, i.e., the ratio of surface area to  
projected area of surface unit. TRI is given by TRI = 1/cos(β), where β is the slope angle

Lithology A description of its physical characteristics visible at outcrop, in hand or core samples. Physical characteristics 
include color, texture, grain size, and composition. It was extracted from the geological map

Bedding structure The intersection relationship between strata and slope. More details can be found in Zhou et al. (2018a)

Distance to faults Characterizes the first-order intensity of fractures in rock mass near the faults

Distance to rivers Represents its exposure to the river erosion

Distance to gullies Characterizes the influence strength of the gully on the landslide
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where P(s) is the spatial probability of landslide occurrence, P(t) is 
the temporal probability of a particular triggering event, and P(l) is 
the probability of the landslide failure in response to the triggering 
event. We assume that the specific triggering event is about to occur 
and P(t) equals 1. And thus, Eq. 1 can be simplified as P(s) × P(l).

The principle of SBAS InSAR

SBAS InSAR method relies on a collection of interferograms with 
comparatively small temporal intervals and short perpendicular 
baselines. Phase � in an interferogram reflects the difference in the 
round-trip distance from sensors to monitoring targets,

where �
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 are the phase components due to 

ground deformation, topographic error, atmospheric disturbance, 
inaccurate orbit information, and other noise, respectively. The 
phase of ground deformation can be obtained by removing other 
phase components via spatial and temporal filters. Based on the 
singular value decomposition and minimum norm criterion of 
deformation rate, we can resolve time-series deformation products 
in forms of secular rates and cumulative displacement time series 
(Berardino et al. 2002; Hooper et al. 2004).

The Sentinel-1 SAR satellite mission launched by the European 
Space Agency in 2014 comprises a constellation of two near-polar 
orbiting satellites with C-band SAR sensors, which operates with 
a revisit time of 12 days from each individual satellite and 6 days 
from two consecutive satellites (Ma et al. 2021). Because the trig-
gering factors of landslide in TGRA (rainfall and reservoir water 
level fluctuation) change periodically within 1 year, landslide haz-
ard intensity in different water years is similar (Cao et al. 2016; Tang 
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et al. 2019). Differently from previous work (Segoni et al. 2014; Fu 
et al. 2020; Wang et al. 2020a, b), here we focus on the details of 
intra-annual variations to try to predict small changes by combin-
ing methods of probability analysis and MT-InSAR. Here we focus 
on 1 water year from September 30, 2016, to September 13, 2017, with 
a collection of 28 ascending Sentinel-1 images (Fig. 3).

The processing of radar images using MT-InSAR comprises of 
interferogram generation and time-series analysis. In this study, 
the threshold values of temporal and perpendicular baselines are 
90 days and 1000 m, respectively. We use the 1 arc-second void-filled 
version of the Shuttle Radar Topography Mission digital elevation 
model to simulate the topographic phase and generate differen-
tial interferograms. Subsequently, the SBAS module in StaMPS 
is employed for the MT-InSAR analysis to derive the time-series 
displacements and velocities. We select monitoring targets with 
coherence above the threshold of 0.6 (Morishita et al. 2020; Zhou 
et al. 2020a, b). The slope orientation of the study area is mostly 
north–south, to which the InSAR technique is less sensitive. We use 
the LOS measurements rather than a down-slope projection of the 
LOS rates (Hilley et al. 2004; Hu et al. 2018).

MT‑InSAR‑assisted dynamic hazard mapping

The time-series displacements obtained from MT-InSAR can be 
used as the supplement for an enhanced landslide hazard map-
ping initially achieved by the probability analysis (“The principle 
of landslide hazard mapping”). Our framework consists of five steps 
(Fig. 4): (i) predict the spatial probability of landslide occurrence 
using machine learning methods SVM; (ii) calculate the temporal 
probability of landslide occurrence in response to the triggering 
events; (iii) initialize a preliminary landslide hazard map using 

Fig. 2   Landslide number and 
annual rainfall total from 1995 
to 2015

Fig. 3   The time distribution of 
Sentinel-1 imagery
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spatial and temporal probabilities; (iv) extract the time-dependent 
ground deformation velocities using MT-InSAR method; (v) final-
ize a landslide hazard map by integrating ground deformation and 
the preliminary hazard map.

Results

Preliminary landslide hazard map

Landslide susceptibility map

The susceptibility map produced by SVM is shown in Fig. 5(a). 
The predicted spatial probability is within the range of 0 to 0.988. 
The statistics are shown in Table 2. The spatial probability value of 
53.90% pixels is less than 0.1, and most of them are far away from 

the Yangtze River. It means that the influence of the Yangtze River 
on landslide stability is only within a certain range of both banks. 
The spatial probability of 21.40% pixels is larger than 0.8. Most of 
them are distributed on two sides of the Yangtze River (Fig. 5(a)). 
The susceptibility map and statistics indicate that the distance to 
rivers is the main predisposing factor of landslide spatial develop-
ment, which is also evident from the factor importance ranking 
(Yu et al. 2019).

The receiver operating characteristics (ROC) curve (Hanley and 
McNeil 1983) is used to assess the performance. The area under the 
ROC curve (AUC) can be considered an accuracy index, and the 
model with an AUC larger than 0.8 has an excellent performance 
(Mandrekar 2010). The AUCs in training and validation are 0.927 
and 0.922, respectively (Fig. 5(b)). It helps in verifying the perfor-
mance of our trained model and the consequent susceptibility map.

Fig. 4   The flowchart of 
MT-InSAR-assisted landslide 
hazard mapping

Fig. 5   a The susceptibility map 
produced by SVM. b The ROCs 
of SVM
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Landslide hazard mapping

The antecedent 5-day rainfall total is classified into four groups: 0, 
0–50, 50–100, and > 100 mm (Liu et al. 2014). For two decades from 
1995 to 2015 (Table 3), the rainfall condition of 0–50 mm occurred 
5838 times, while the conditions of 50–100 mm and > 100 mm 
occurred 429 and 91 times, respectively. When the antecedent 5-day 
rainfall total is greater than 100 mm, 47 landslides were triggered, 
accounting for 29.75% of the total landslide events in this period. 
A total of 36 and 75 landslide events occurred when the anteced-
ent 5-day rainfall total is 0–50 mm and 50–100 mm, accounting for 
22.78% and 47.47% of the landslide inventory, respectively. The tem-
poral probabilities of landslide occurrence under the four rainfall 
conditions are 0, 0.006, 0.175, and 0.517, respectively.

Based on the predicted landslide spatial probability P(s) (Fig. 5) 
and the temporal probability of landslide occurrence under differ-
ent rainfall conditions P(l) (Table 3), we obtain the landslide hazard 
index H referring to Eq. 1 (Fig. 6).

Ground deformation

The ground deformation velocity obtained from MT-InSAR is 
shown in Fig. 7. A total of 233,848 monitoring points are captured in 
our study area, resulting in a density of 1665 point/km2. The stand-
ard deviation of LOS velocity is 7.6, and we set two times the stand-
ard deviation as the stability threshold (Barra et al. 2017; Solari et al. 
2020). The deformation velocities of 72.94% monitoring points are 
between − 15 and 15 mm/year. This seems to show that most slopes 
of the study area are stable. The largest velocities in LOS directions 
are 85.65 mm/year and − 96.17 mm/year, respectively.

We focus on the Shuizhuyuan landslide near Yangtze River to 
interpret the temporal characteristics of deformation and induc-
ing factors of rainfall and reservoir level fluctuation (Figs. 7 and 
8). The deformation velocity of Shuizhuyuan landslide presents 
significant difference in dry and wet seasons. During the dry 
season from October 2016 to March 2017, it was in a stable condi-
tion due to the high reservoir water level and scarce rainfall at 
TGRA, and the deformation velocity is 0.14 mm/month. During 
the wet season from April to September 2017, influenced by the 
rapid drawdown of reservoir water level and abundant rainfall, 
the deformation accelerated to − 13.04 mm/month.

Landslide hazard mapping assisted by deformation rates

Many bank landslides in TGRA move slowly. They creep at rates 
ranging from millimeters to several meters per year and can per-
sist for years to decades (Yin et al. 2010; Zhou et al. 2016; Tang 
et al. 2019; Juang 2021). The reservoir water level in TGRA is 
similar throughout different years. It fluctuates between 145 and 
175 m every year (Fig. 8), controlled by the hydraulic engineering 
operation at the Three Gorges Dam. In response to the seasonal 
rainwater recharge and reservoir water loading and seepage, 
landslides present greater rates during the wet season from April 
to September when a dynamic failure is more likely to occur. 
In the dry season, landslide motions are more idle with smaller 
potential to fail due to less rainfall and gradual change of the 
reservoir water level. So the probability of landslide occurrence 
is time varying. We focus on one complete water year during 
2016–2017 and divide it into two for their respective hazard map-
ping. We rely on MT-InSAR method to compute the deformation 
velocities during the dry season of 9/30/2016 to 3/29/2017 and the 
wet season of 3/29/2017–9/13/2017. We use the Ordinary Kriging 
method to interpolate the displacement fields in space (Fig. 9). It 
is conducted in ArcGIS 10.2 and the cell size is set as 20 m as well.

Based on field investigation, we divide the obtained landslide 
hazard index into four tiers: H1 (0–0.0021), H2 (0.0021–0.0700), 
H3 (0.0700–0.1607), and H4 (> 0.1607). Meanwhile, the monthly 
surface deformation velocities are also categorized into four 
levels: V1 (0–2 mm/month), V2 (2–4 mm/month), V3 (4–6 mm/
month), and V4 (> 6 mm/month). With the combination of the 
preliminary hazard levels and deformation velocities, an assess-
ment matrix is proposed for landslide hazard mapping (Table 4). 
The hazard mapping results of the two periods are shown in 
Figs. 10 and 11.

Table 2   Statistics of susceptibility map

Probability No. pixels %

0.0–0.1 152,294 53.90

0.1–0.2 15,192 5.38

0.2–0.3 10,229 3.62

0.3–0.4 8,347 2.95

0.4–0.5 7,191 2.55

0.5–0.6 7,903 2.80

0.6–0.7 8,459 2.99

0.7–0.8 12,481 4.42

0.8–0.9 47,008 16.64

0.9–1.0 13,442 4.76

Table 3   Statistics of rainfall events and landslide occurrence

Antecedent 5-day rainfall total (mm)

0 0–50 50–100  > 100

Rainfall event

  Number 1,082 5,838 429 91

  Proportion 14.54% 78.47% 5.77% 1.22%

Landslide occurrence

  Number 0 36 75 47

  Proportion 0 22.78% 47.47% 29.75%

  Temporal probability 
of landslide  
occurrence

0 0.006 0.175 0.517
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Discussion

Landslide hazard under different rainfall conditions

In the dry season of 9/30/2016–3/29/2017, TGRA was under the 
condition of high reservoir water level and scarce rainfall. More 
than 97% of the study area was in the hazard levels of Low/Very 
Low. In the wet season of 3/29/2017–9/13/2017, the rapid fluctua-
tion of reservoir water levels and intense rainfall destabilized 
the landslides. MT-InSAR results show that the landslide accel-
erated during this period, such as at the Shuizhuyuan landslide 
and Taping landslide (Fig. 9). When the antecedent 5-day rainfall 

reaches 50–100 and > 100 mm, the proportions of pixels showing 
High and Moderate hazard levels increase to 10.41% and 22.56%, 
respectively (Table 5).

The intensity of rainfall is correlated with the landslide haz-
ard. Our statistics demonstrate that the area with the Very Low 
hazard level reduced when the rainfall increases, and vice versa. 
When the antecedent 5-day rainfall total exceeds 100 mm, the 
proportion of pixels with High hazard level peaks at 0.06% and 
2.27%, while the Very Low hazard level is the least at 55.21% and 
41.84%, respectively. Meanwhile, when the antecedent 5-day rain-
fall total is less than 50 mm, 0.02% and 0.38% of areas are in High 
hazard level in dry and wet season, respectively (Table 5).

Fig. 6   The preliminary landslide hazard maps when the antecedent 5-day rainfall total is a 0, b 0–50, c 50–100, and d > 100 mm, respectively

Fig. 7   The LOS deformation 
velocity from 9/30/2016 to 
9/13/2017. SZY refers to Shu-
izhuyuan landslide
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Fig. 8   InSAR displacement time-series of Shuizhuyuan landslide, reservoir level, and rainfall over the TGRA from 2016 to 2017

Fig. 9   The InSAR line-of-sight 
(LOS) displacement velocity 
during a the dry season from 
9/30/2016 to 3/29/2017) and b 
the wet season from 3/29/2017 
to 9/13/2017
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Accuracy improvement from MT‑InSAR displacement 
measurements

False-positive error

With the slope stabilization using engineering treatment or dor-
mancy of landslides, landslide hazard level can be reduced. It will 
cause false-positive error in hazard maps without previous iden-
tification of landslide hazard. For example, in Wushan urban area, 
many detected landslide terrains have been confirmed false high-
hazard-level by field investigation. As the result of the slope treat-
ment, the Wushan urban area did not deform during the period 
between 2016 and 2017, which is supported by field investigation 
and MT-InSAR results (Fig. 9). The MT-InSAR-assisted method 
effectively reduces the false-positive error (Figs. 10 and 11). In 

our proposed method, when the antecedent 5-day rainfall total 
is 50–100 mm, the proportions of pixels in Moderate and High 
hazard levels are reduced by 24.34% (34.76–10.41%) and 33.52% 
(34.76–1.24%) in wet and dry seasons, respectively (Tables 5 and 6).

False-negative error

The false-negative error may lead to fatal decisions in urban plan-
ning. The main reason for the false-negative error is unrecog-
nized landslides or outdated landslide inventory. Anthropogenic 
modification (e.g., loading, excavation) on the slopes to meet with 
the engineering demands may break up the force equilibrium of 
natural slopes, such as the Jinjiling landslide. The freely available 
Sentinel-1 satellite imagery and the widely used MT-InSAR data 
processing methods provide a cost- and time-efficient tool to meas-
ure the ground deformation. The continuous deformation informa-
tion can be effectively incorporated to update the hazard maps and 
to reduce the false-negative errors. For example, when the rainfall 
is less than 50 mm, no region is exposed to High/Moderate land-
slide hazard level. With the help of the deformation measurements, 
the hazard map of the mobile Jinjiling landslide can be updated 
(Fig. 10(a) and (b)). The proportions of pixels in High and Moderate 
hazard levels increase by 0.43% (0–0.43%) and 4.93% (0–4.93%) in 
dry and wet seasons, respectively (Tables 5 and 6).

Dynamic landslide hazard assessment

The landslide hazard is dynamic in response to the environmen-
tal variabilities. Here we consider two representative time frames 

Table 4   The matrix of landslide hazard mapping integrating the 
preliminary landslide hazard tiers (H1–4) and ground deformation 
velocities (V1–4)

V4 V3 V2 V1

H4 4 4 3 2

H3 4 3 2 2

H2 4 3 2 1

H1 4 3 1 1

Fig. 10   The landslide hazard maps during 9/30/2016–3/29/2017 when the antecedent 5-day rainfall total is a 0, b 0–50, c 50–100, and 
d > 100 mm. Black circles show the location of the Jinjiling landslide
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of dry and wet seasons for landslide hazard mapping. In the dry 
season of 9/30/2016–3/29/2017, the proportions of pixels in High 
hazard level under four rainfall conditions are 0.02%, 0.02%, 0.04%, 
and 0.06%, respectively (Table 5). Only the Jinjiling landslide was 
deforming (6.52 mm/month) and at a High hazard level. The exca-
vation of the road in front of the landslide formed a high steep free 
face, providing the necessary conditions for slip and shearing. That 

is the reason why the Jinjiling landslide experienced large deforma-
tion with small rainfall amounts (Yan et al. 2019). In the wet season 
of 3/29/2017–9/13/2017, the number of the deformed pixel (> 4 mm/
month) increases by 12,705. In addition to the accelerated deforma-
tion of the Jinjiling landslide induced by rainfall, the deformation 
of many reservoir landslides also accelerated under a combined 
impact of heavy rainfall and rapid fluctuation of reservoir water 

Fig. 11   The landslide hazard maps during 3/19/2017–9/13/2017 
when the antecedent 5-day rainfall total is a 0, b 0–50, c 50–100, and 
d > 100 mm. TP refers to Taping landslide and SZY refers to Shuizhuy-

uan landslide. Black circles show the locations of the Taping and 
Shuizhuyuan landslides

Table 5   Statistics on the 
landslide hazard

Antecedent 5-day rainfall total (mm)

0 0–50 50–100  > 100

Pixels exposed to the 
landslide hazard

No % No % No % No %

Dry season: 9/30/2016–3/29/2017

  High 47 0.02 47 0.02 106 0.04 175 0.06

  Moderate 1,159 0.41 1,159 0.41 3,376 1.20 6,866 2.43

  Low 0 0.00 5,784 2.05 97,444 34.55 119,294 42.30

  Very low 280, 830 99.57 275,046 97.52 181,110 64.22 155,701 55.21

Wet season: 3/29/2017–9/13/2017

  High 1082 0.38 1,082 0.38 3,185 1.13 6,416 2.27

  Moderate 12,829 4.55 12,829 4.55 26,159 9.28 57,198 20.28

  Low 0 0.00 48,654 17.25 113,783 40.34 100,414 35.60

  Very low 268,125 95.07 219,471 77.82 138,909 49.25 118,008 41.84
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levels, such as in the Taping landslide and Shuizhuyuan landslide 
(Fig. 9). In June 2017, a tension crack developed in the Taping land-
slide, with a strike of approximately 33°, length of 20 m, width of 
approximately 10 cm, and visible depth of 1 m (Zhang et al. 2021). 
During this period, the proportions of pixels in the High hazard 
level under four rainfall conditions are 0.38%, 0.38%, 1.13%, and 
2.27%, respectively (Table 5). The MT-InSAR-assisted results show 
that the landslide hazard varies in different seasons and rainfall 
conditions (Figs. 10 and 11). The multi-temporal hazard maps can 
be better inform the actual landslide occurrence. Compared with 
the statistical hazard maps (Fig. 6), multi-temporal hazard maps 
can help in rapidly locating hazard sources changing over time, 
which can guide hazard detection more accurately and improve 
the efficiency of risk control. In the dry season, more attentions 
should be paid to the Jinjiling landslide because it is one of the 
few landslides still in active motion. In the wet season, rainwater 
and rapid drawdown of reservoir water level may reactivate the 
reservoir landslides and promote the landslide acceleration; more 
attentions should be paid on these landslides.

The feasibility of MT‑InSAR‑assisted method

The deformation velocity extracted by the MT-InSAR technique is 
a crucial input in our proposed method, and it is a premise for the 
accurate hazard mapping. MT-InSAR approach is feasible to map 
slow motions rather than fast motions due to the intrinsic theory 
of interferometry, the configuration of the radar wavelength, and 
the revisiting time of the platform (Wasowski and Bovenga 2014; 
Ciampalini et al. 2016). The mapping method produces more reli-
able results in regions with no or sparse vegetated covers, so that 
the temporal and volumetric decorrelation is reduced. The shadow 
phenomenon often exists in SAR image in mountainous terrains 
(Novellino et al. 2017). The MT-InSAR method with multi-platform 
and multi-track SAR images is suggested to reduce the shadow 
effect. In addition, longer wavelength data (e.g., L-band) can better 
penetrate the vegetative canopies and maintain the coherence, and 
thus is recommended for the MT-InSAR-assisted hazard mapping 
for slow-moving landslides. However, the catastrophic evolution 
of landslide deformation patterns often starts from a transitional 
creep behavior that can be fruitfully observed by MT-InSAR and 
exploited, in case of progressive-like failures, to predict the time of 
failure by using inverse-velocity methods (Catani and Segoni 2021).

Conclusion

In this paper, we implement the dynamic landslide hazard map-
ping by combining the spatiotemporal probability analysis and 
time-varying ground deformation velocities derived by MT-
InSAR method. We consider two representative time frames 
of the dry and the wet seasons in 1 water year of 2016–2017. We 
specialize the 5-day rainfall totals in groups of 0, 0–50, 50–100, 
and > 100 mm to conduct landslide hazard mapping using our 
proposed framework. Our results demonstrate that the landslide 
hazard levels elevate with increasing rainfall. InSAR ground 
deformation measurements are the key for dynamic landslide 
hazard mapping. They allow us to precisely outline the Shuizhuy-
uan landslide and Taping landslide. Landslide hazard mapping 
requires the best elimination of the false-positive/-negative error. 
The comparison with the preliminary hazard maps and field sur-
vey suggests that the false errors can be effectively corrected after 
compiling the ground deformation velocities. The integration of 
time-varying ground velocities allows for a more accurate map-
ping of the dynamic landslide hazards.
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